

Измеритель сопротивления заземления MI 3290

Руководство по эксплуатации Версия 1.1.2, Код №. 20 752 597

Дистрибьютор: ООО «Евротест» 198216 Санкт-Петербург, Ленинский пр., 140 Тел.: (812) 703-05-55 Веб-сайт: <u>www.metrel-russia.ru</u> Эл. почта: <u>sales@metrel-russia.ru</u>

Производитель:

МЕТREL d.d. Люблянска улица 77 1354 Хорьюл Словения Веб-сайт: <u>www.metrel-russia.ru</u> Эл. почта: <u>metrel@metrel.si</u>

> На прибор нанесена такая маркировка соответствия требованиям норм Европейского союза по ЭМС, низковольтному оборудованию и ROHS.

© 2016 METREL

Торговые названия Metrel, Smartec, Eurotest, Autosequence являются торговыми марками, зарегистрированными или ожидающими регистрации в Европе и других странах. Никакая часть этой публикации не может быть воспроизведена или использована в какой-либо форме или любыми средствами без письменного разрешения от компании METREL.

Содержание

1	Общ 1 1	ее описание	<mark>8</mark>
_			0
2	Меры	ы предосторожности при работе	9
	2.1	Предупреждения и примечания	9
4	<u>∠.</u> ∠ つつ1	Предворительной аккумуляторной оатарей	. 1 1
	2.2.1	Предварительная зарядка	. IZ
	2.2.2 2 3	Список применимых стандартов	15
3	Tenw	ины и определения	16
4	0		47
4		ание измерителяКордистические измерителя	
•	+. I 4 つ	Пацеяь одератора	. 17
•	+.∠	панель оператора	. 17
5	Прин	адлежности	19
	5.1	Стандартный комплект	. 19
;	5.2	Дополнительные принадлежности	. 19
6	Рабо	та с измерителем	20
(5.1	Общее описание назначений кнопок	. 20
(5.2	Общее описание жестов управления сенсорного дисплея:	. 20
(5.3	Виртуальная клавиатура	. 21
(5.4	Дисплей и звук	. 22
	6.4.1	Индикация разряда батареи и времени	. 22
	6.4.2	2 Сообщения	. 22
	6.4.3	В Звуковая сигнализация	. 24
	6.4.4	Справочные страницы	. 25
7	Глав	ное меню	26
•	7.1	Главное меню измерителя	. 26
8	Обш		27
	оощ २1	ие настроики	28
	3.1	Экономия энергии	28
	3.2	Лата и время	29
	3.0 3.4	Профици	29
	3.5	Настройки	30
	3.6	Начальные настройки	. 31
	3.7	Информация	. 31
	3.8	Группы автоматических измерений	. 32
	8.8.1	Меню групп автоматических измерений	. 32
	8.8.2	2 Операции в меню групп автоматических измерений «Auto test»:	. 32
	8.8.3	В Выбор списка автоматических измерений	. 33
	8.8.4	Удаление списка автоматических измерений	. 33
ł	3.9	Диспетчер рабочего поля	. 34
	8.9.1	Рабочие поля и файлы экспорта	. 34
	8.9.2	2 Основное меню диспетчера рабочего поля	. 34
	8.9.3	В Операции с рабочими полями	. 35
	8.9.4	Операции с файлами экспорта	. 35
	8.9.5	5 Добавление нового рабочего поля	. 36

	8.9.7	Удаление рабочего поля/ файла экспорта	
	8.9.8	Импортирование рабочего поля	
	8.9.9	Экспортирование рабочего поля	
•	0		
9	Организа	атор памяти	
9		ню организатора памяти	
	9.1.1	Состояния измерения	
	9.1.2	Элементы структуры 41	
	9.1.3	Индикация состояния измерения подэлементов структуры	
	9.1.4	Операции в иерархическом меню 42	
10	Одиночн	ые измерения	
1	0.1 Реж	кимы выбора	
	10.1.1	Страницы одиночных измерений	
	10.1.2	Установка параметров и пределов одиночных измерений	
	10.1.3	Окно результатов олиночного измерения	
	10.1.0	Просмотр графика 58	
	10.1.4	Повторный вызов страницы результатов одиночного измерения 58	
11	Испытан	ия и измерения	
1	1.1 Изм	ерения сопротивления заземления	
	11.1.1	2-проводное измерение61	
	11.1.2	3-проводное измерение63	
	11.1.3	4-проводное измерение65	
	11.1.4	Селективное измерение (железные клещи) 67	
	11.1.5	Измерение сопротивления заземления двумя токоизмерительным	И
	клещами	169	
	11.1.6	Высокочастотное (25 кГц) измерение сопротивления заземления 71	
	11.1.7	Селективное измерение (гибкие клещи)73	
	11.1.8	Пассивные измерения гибкими клещами75	
1	1.2 Изм	ерения удельного сопротивления грунта 77	
	11.2.1	Общие понятия об удельном сопротивлении грунта	
	11.2.2	Измерение методом Веннера	
	11.2.3	Измерение методом Шлумбергера 80	
1	1.3 Изм	ерение импеданса заземления импульсным методом	
	11.3.1	Импульсное измерение	
1	1.4 Изм	ерение сопротивления проводников постоянным током	
	11.4.1	Измерение сопротивления проводников током 200 мА	
	11.4.2	Измерение сопротивления проводников током 7 мА	
1	1.5 Изм	ерение импеданса напряжением переменного тока	
	11.5.1	Измерение импеданса	
1	1.6 Пот	енциал грунта	
	1161	Измерение потенциала 90	
	1162	Основные теоретические сведения о напряжении прикосновения	и
		напряжении 92	
1	17 Ппо	исприжении споры 92	
	11 7 1	Проверка провода заземления опоры	
1	тт. <i>г</i> .т 18 Изм		
1	11 2 1	Измерение среднеквалратического значения силы тока железным	И
		изморение ореднеквадратического значения силы тока железным 07	1
	11 8 2		И
		измерение среднеквадратического значения силы тока тиоким	VI
	клещами		

44 0	Самодиагностика
11.9	1 Проверка вольтметра100
11.9	2 Проверка амперметра 101
11.9	3 Проверка железных, гибких клещей102
12 Детс	матические измерения 103
12 1	Выбор автоматических измерений 103
12.2	Организация автоматических измерений 104
12.2	1 Меню просмотра автоматических измерений 104
12.2	 Пошаговое выполнение автоматических измерений 106
12.2	3 Окно результатов автоматического измерения 107
12.2	4 Окно памяти автоматического измерения 109
12.2	
13 Связ	ь110
14 Техн	ическое обслуживание111
14.1	Чистка
14.2	Периодическая поверка111
14.3	Сервисное обслуживание111
14.4	Обновление измерителя
15 Toyu	
15 10	
15.1	1 2 3 Даровольній метол (импеданса) заземления 112
15.1	
	и измерение полного сопротивления (импеданса) заземления с инью желерных клешей (селективное измерение) 113
15 1	З Измерение попного сопротивления (имперение) ззземления с
	з измерение полного сопротивления (импеданса) заземления с ликю прух клешей 11/
15 1	
пасс	ч измерение полного сопротивления заземления (импеданса) 11/
15 1	5 Измерение активного сопротивления заземления ВЦ-метолом (25 кГи)
10.1	о измерение активного сопротивления заземления вметодом (25 кг ц)
	115
15 1	115 6 Измерение попного сопротивления (импеданса) заземления с
15.1.	115 6 Измерение полного сопротивления (импеданса) заземления с лиью гибких клешей (селективное измерение) 116
15.1. помс 15.2	115 6 Измерение полного сопротивления (импеданса) заземления с ощью гибких клещей (селективное измерение)
15.1. помо 15.2 15.2	115 6 Измерение полного сопротивления (импеданса) заземления с ощью гибких клещей (селективное измерение)
15.1. помс 15.2 15.2. 15.3	115 6 Измерение полного сопротивления (импеданса) заземления с ощью гибких клещей (селективное измерение)
15.1. помс 15.2 15.2. 15.3 15.3	115 6 Измерение полного сопротивления (импеданса) заземления с ощью гибких клещей (селективное измерение)
15.1. помс 15.2 15.2 15.3 15.3 15.3	115 6 Измерение полного сопротивления (импеданса) заземления с ощью гибких клещей (селективное измерение)
15.1 помс 15.2 15.2 15.3 15.3 15.3	115 6 Измерение полного сопротивления (импеданса) заземления с ощью гибких клещей (селективное измерение)
15.1 помс 15.2 15.3 15.3 15.3 15.3 прик 15.4	115 6 Измерение полного сопротивления (импеданса) заземления с ощью гибких клещей (селективное измерение)
15.1 помс 15.2 15.3 15.3 15.3 прик 15.4 метоло	115 6 Измерение полного сопротивления (импеданса) заземления с ощью гибких клещей (селективное измерение)
15.1 помс 15.2 15.3 15.3 15.3 прик 15.4 методо 15.4	115 .6 Измерение полного сопротивления (импеданса) заземления с ощью гибких клещей (селективное измерение)
15.1 помс 15.2 15.3 15.3 15.3 15.3 прик 15.4 методо 15.4	115 6 Измерение полного сопротивления (импеданса) заземления с ощью гибких клещей (селективное измерение)
15.1 помс 15.2 15.3 15.3 15.3 прик 15.4 методс 15.4 15.5	115 6 Измерение полного сопротивления (импеданса) заземления с ощью гибких клещей (селективное измерение)
15.1 помс 15.2 15.3 15.3 15.3 прик 15.4 методо 15.4 15.5 15.5	115 6 Измерение полного сопротивления (импеданса) заземления с ощью гибких клещей (селективное измерение)
15.1 помс 15.2 15.3 15.3 15.3 15.3 прик 15.4 15.4 15.5 15.5 15.5	115 6 Измерение полного сопротивления (импеданса) заземления с ощью гибких клещей (селективное измерение)
15.1 помс 15.2 15.3 15.3 15.3 15.3 прик 15.4 15.4 15.5 15.5 15.5 15.6	115 6 Измерение полного сопротивления (импеданса) заземления с ощью гибких клещей (селективное измерение)
15.1 помс 15.2 15.3 15.3 15.3 15.3 прик 15.4 Методо 15.4 15.5 15.5 15.5 15.6 15.6	115 6 Измерение полного сопротивления (импеданса) заземления с ощью гибких клещей (селективное измерение)
15.1 помс 15.2 15.3 15.3 15.3 15.3 15.3 прик 15.4 15.4 15.5 15.5 15.5 15.6 15.6 15.7	115 6 Измерение полного сопротивления (импеданса) заземления с ощью гибких клещей (селективное измерение) 116 Измерения удельного сопротивления грунта 117 1 Метод Веннера и Шлумбергера. 117 Потенциал грунта 118 1 Отношение потенциалов. 118 2 Измерение генерируемого тока, напряжения, расчет напряжения основения и шагового напряжения (импеданса) заземления импульсным мм. 119 1 Импульсное измерение 119 1 Импульсное измерение 120 2 Измерение током 200 мА. 120 2 Измерение током 7 мА. 121 Измерение полного сопротивления (импеданса) переменным током 122 122 1 Измерение током 7 мА. 121 1 Измерение полного сопротивления (импеданса) переменным током 122 122 1 Измеритель импеданса 122
15.1 помс 15.2 15.3 15.3 15.3 15.3 15.3 прик 15.4 15.4 15.5 15.5 15.5 15.6 15.6 15.7 15.7	115 6 Измерение полного сопротивления (импеданса) заземления с ощью гибких клещей (селективное измерение) 116 Измерения удельного сопротивления грунта 117 1 Метод Веннера и Шлумбергера 117 Потенциал грунта 118 1 Отношение потенциалов 118 2 Измерение генерируемого тока, напряжения, расчет напряжения 118 2 Измерение полного сопротивления (импеданса) заземления импульсным 119 1 Импульсное измерение 119 1 Импульсное измерение 120 2 Измерение током 200 мА 120 2 Измерение полного сопротивления (импеданса) переменным током 122 1 Измерение током 7 мА 121 Измерение полного сопротивления (импеданса) переменным током 122 122 1 Измерение током 7 мА 121 1 Измерение полного сопротивления (импеданса) переменным током 122 122 1 Измеритель импеданса 122 2 Гибкие клеци 123
15.1 помс 15.2 15.3 15.3 15.3 15.3 15.3 прик 15.4 Методо 15.4 15.5 15.5 15.5 15.6 15.6 15.7 15.7	115 6 Измерение полного сопротивления (импеданса) заземления с ощью гибких клещей (селективное измерение)
15.1 помс 15.2 15.3 15.3 15.3 15.3 15.3 прик 15.4 15.4 15.5 15.5 15.5 15.6 15.6 15.7 15.7 15.7	115 6 Измерение полного сопротивления (импеданса) заземления с ощью гибких клещей (селективное измерение)

15.10 Влияние помех	126
15.11 Подрезультаты в функциях измерения	127
15.12 Основные характеристики	128
Приложение А – Объекты структуры	129
Приложение В – Таблица выбора профилей	130
Приложение С - Функциональные возможности и установка штырей	131
Приложение D – примеры импульсного и 3-проводного измерений	135
Приложение E - Программирование автоматических измерений в Г Manager	10 Metrel ES 136

1 Общее описание

1.1 Особенности

Измеритель сопротивления заземления МІ 3290 - это многофункциональный переносной прибор, предназначенный для измерения сопротивления заземления (методы с клещами, импульсный метод), удельного сопротивления грунта, потенциала грунта и других величин.

Прибор разработан и изготовлен на основании обширных знаний и опыта, накопленных за многие годы работы в этой области.

Функции и свойства измерителя сопротивления заземления МІ 3290 (далее измеритель):

- > 2-, 3-, 4- проводные измерения сопротивления заземления;
- измерение сопротивления отдельных заземлителей с помощью одних клещей (селективное измерение);
- > измерение сопротивления заземления с помощью двух клещей;
- измерения сопротивления заземления с помощью высокочастотного испытательного сигнала (25 кГц);
- измерения с использованием одних или нескольких (до 4) гибких клещей (селективное измерение);
- измерение удельного сопротивления грунта (методы Веннера и Шлумбергера);
- измерение сопротивления проводников токами 7 мА и 200 мА;
- измерение импеданса переменным током (55 Гц 15 кГц);
- измерение импеданса заземления импульсным методом (10/ 350 мкс);
- измерение потенциала грунта, а также шагового напряжения и напряжения прикосновения;
- > проверка целостности проводника заземления опоры;
- измерение СКЗ силы тока (железные и гибкие клещи);
- самодиагностика;
- ▶ автоматические измерения;
- > организатор памяти.

Параметры и результаты измерений легко читаются на цветном сенсорном дисплее измерителя (диагональ 4,3").

Измеритель может сохранять результаты измерений. ПО из штатного комплекта поставки позволяет передавать полученные результаты на ПК для проведения анализа и печати отчетов.

Измеритель MI 3290	в соответствии с требованиями		
2-проводное измерение	ст. EN 61557 – 5 [сопротивление заземления]		
3-проводное измерение	ст. IEEE 81 – 2012 [двухпроводный метод, трехпроводный метод,		
4-проводное измерение	метод падения потенциала]		
2-клещевой метод	Ст. IEEE 81 — 2012 [Измерения сопротивления токоизмерительными клещами или безштыревой метод]		
Измерение сопротивления	Ст. ІЕЕЕ 81 – 2012 [Измерения сопротивления токоизмерительными		
отдельных заземлителей	клещами/ методом падающего потенциала]		
(гибкие клещи 1—4)			
Измерение сопротивления			
отдельных заземлителей			
(железные клещи)			
Высокочастотный метод (25	Ст. ІЕЕЕ 81—1983 [высокочастотный измеритель сопротивления заземления]		
кГц)			
Метод Веннера	Ст. IEEE 81 — 2012 [четырехточечный метод измерения (равноудаленные электроды или по схеме Веннера)]		
Метод Шлумбергера	Ст. IEEE 81—2012 [четырехточечный метод измерения (разноудаленные электроды или по схеме Шлумбергера-Палмера)]		
Омметр (200 мА)	EN 61557 – 4 [Сопротивление заземления и эквипотенциальные соединения]		

2 Меры предосторожности при работе

2.1 Предупреждения и примечания

Для поддержания высокого уровня безопасности оператора при проведении различных измерений, компания Metrel рекомендует содержать измеритель MI 3290 в исправном состоянии. При использовании измерителя необходимо соблюдать следующие основные меры предосторожности:

- Этот A знак на измерителе означает «Особо внимательно ознакомьтесь с руководством по эксплуатации для обеспечения безопасности работ». Знак требует выполнения соответствующих действий!
- Если измеритель будет использоваться в целях, не указанных в данном руководстве, защитные характеристики измерителя могут быть снижены!
- Внимательно ознакомьтесь с данным руководством по эксплуатации, иначе работа с измерителем может быть опасной для оператора, самого измерителя или для испытываемого оборудования!
- При проведении измерения между электродом заземления и удаленным заземлением может возникать опасное для жизни напряжение!
- Не пользуйтесь измерителем и принадлежностями, если замечено какое-либо повреждение!
- Принимайте во внимание все известные меры предосторожности, чтобы исключить риск поражения электрическим током во время измерений при высоком напряжении!
- Во избежание повреждения не подключайте испытательное оборудование к сетевому напряжению, которое отличается от указанного на этикетке сетевой вилки.
- К проведению ремонта или регулировки измерителя допускаются только работники с соответствующими допуском и квалификацией!
- При работе с электроустановками должны быть приняты все необходимые меры безопасности во избежание поражения электрическим током!
- Запрещается работа оборудования при высокой влажности, а также при наличии взрывоопасных паров или газов.
- К работе с измерителем допускаются только лица с соответствующей подготовкой и квалификацией.
- Не подсоединяйте какие-либо источники напряжения к разъему для подключения железных клещей. Он предназначен для подсоединения только токовых клещей. Максимальное входное напряжение составляет 3В!

Маркировка на измерителе:

Изучите руководство по эксплуатации, уделив особое внимание безопасности работы, данный знак требует выполнения соответствующих действий!

Эта маркировка означает соответствие требованиям норм Европейского союза по ЭМС, низковольтному оборудованию и ROHS.

Это оборудование подлежит утилизации как электронные отходы.

🗥 Предупреждения, которые относятся к измерительным функциям:

Работа с измерителем

- Используйте только стандартные и дополнительные измерительные принадлежности, поставляемые нашими дистрибьюторами!
- Принадлежности к испытательному оборудованию и испытываемому объекту обязательно следует присоединять до начала выполнения измерения. Не касайтесь измерительных проводов или зажимов типа "крокодил" во время проведения измерения.
- □ Не касайтесь никаких токоведущих частей испытываемого оборудования во время проведения измерения, опасность поражения электрическим током!
- Перед подсоединением тестовых проводов и началом проведения измерения обязательно проверьте, чтобы испытываемый объект был отключен от электропитания (от электросети) и обесточен!
- □ Запрещается подсоединять измерительные клеммы (H, S, ES, E) к внешнему постоянному или переменному напряжению 300 В (оборудование CAT IV) во избежание повреждений измерителя!
- □ Не пользуйтесь измерителем в режиме измерения тока для определения опасного напряжения в цепи. Определяйте наличие опасного напряжения в режиме измерения напряжения.

🔼 Предупреждения, касающиеся батарей

- □ Пользуйтесь только батареями изготовителя измерителя.
- □ Запрещается сжигать батареи, они могут взорваться или выделять токсичный газ.
- □ Не разбирайте, не ломайте и не разрушайте корпус батарей никаким образом.
- □ Запрещается замыкать накоротко или менять полярность внешних контактов батареи.
- Держите батареи подальше от детей.
- Не подвергайте батарею воздействию сильных ударов или вибрации.
- Не пользуйтесь поврежденной батареей.
- В случае повреждения встроенной в литий-ионную батарею схемы безопасности и защиты возможен перегрев, растрескивание или воспламенение батареи.
- □ Не оставляйте батарею на длительную зарядку, если измеритель не используется.
- □ Если из батареи сочится жидкость, то не прикасайтесь к этой жидкости.
- При попадании этой жидкости в глаза не трите их. В данном случае следует немедленно тщательно промыть глаза в течение 15 минут до полного удаления остатков электролита и как можно быстрее обратиться за медицинской помощью.

2.2 Батарея и зарядка литий-ионной аккумуляторной батареи

Питание измерителя осуществляется от сети или от литий-ионной аккумуляторной батареи. В левой верхней части ЖКИ находится индикатор состояния батареи и источника питания. В случае, если аккумуляторы / батареи разряжены, измеритель отобразит сообщение, как показано на рисунке 2.1.

Рисунок 2.1: Проверка батареи

Батареи заряжаются всегда, когда к измерителю подключено зарядное устройство. На рис. 2.2 показан разъем для подключения источника питания. Встроенная схема управления заряда (постоянным током/ постоянным напряжением) обеспечивает максимальный срок службы батареи. Номинальное время работы указано для батареи с номинальной емкостью 4,4 А*ч.

Рисунок 2.2: Разъем для подключения источника питания

Измеритель автоматически распознает подключение источника питания и начинает процесс зарядки.

Индикация заряда батарей

Рисунок 2.3: Индикация процесса заряда (анимированная)

Батарея и зарядные характеристики	Тип.		
Тип батареи	VB 18650		
Режим зарядки	Пост. ток и напр.		
Номинальное напряжение	14,8 B		
Номинальная емкость	4,4 A*ч		
Максимальное напряжение зарядки	16,7 B		
Максимальный ток зарядки	1,2 A		
Максимальный ток разрядки	2,5 A		
Типовое время зарядки	4 часа		

Типовой режим зарядки измерителя показан на рис. 2.4.

где:

V_{REG} напряжение зарядки батареи, V_{LOWV}пороговое напряжение предварительной зарядки, I_{CH}ток зарядки батареи, I_{CH/8}..... 1/8 от тока зарядки.

Предварительная зарядка 2.2.1

Если после включения измерителя напряжение на батарее ниже порогового уровня VLOWV, то зарядное устройство подает на батарею только 1/8 от всего тока заряда. Функция предварительной зарядки предназначена для оживления глубоко разряженной батареи. Если в течение 30 минут с начала предварительной зарядки не удается выйти на пороговый уровень V_{LOWV}, то зарядное устройство отключается и появляется индикация отказа «FAULT».

Рисунок 2.5: Индикация отказа батареи (зарядка приостановлена, отказ таймера, отсутствие батареи)

Рисунок 2.6: Индикация полной зарядки батареи (зарядка завершена)

Примечание:

Для дополнительной безопасности у зарядного устройства также внутренний 5-часовой таймер для быстрой зарядки.

Типовое время зарядки составляет 4 часа при температуре от 5°C до 60°C.

Рисунок 2.7: Типовой график зависимости тока от температуры

где:

·Ao.	
T _{LTF}	. порог при температуре -15 °C,
T _{COOL}	. порог при температуре 0 °C,
T _{WARM}	. порог при температуре + 60 °C,
Т _{нтғ}	. порог при температуре + 75 °C.

Зарядное устройство постоянно следит за температурой батареи. Для запуска цикла зарядки температура должна находиться в пределах от T_{LTF} до T_{HTF}. Если температура батареи выйдет за этот интервал, то контроллер приостановит зарядку и подождет, пока температура вернется в пределы от T_{LTF} до T_{HTF}.

Если температура батареи находится в интервале между пределами T_{LTF} и T_{COOL} или между пределами T_{WARM} и T_{HTW}, то ток заряда будет автоматически снижен до значения I_{CH/8} (1/8 от полного тока заряда).

2.2.2 Указания по обращению с литий-ионной батареей.

Литий-ионная аккумуляторная батарея требует регулярного техобслуживания при работе и бережного обращения. Для максимального строка службы литий-ионной аккумуляторной батареи следует изучить и выполнять соответствующие указания данного руководства по эксплуатации.

Не оставляйте батарею в разряженном состоянии на длительные интервалы времени (более 6 месяцев).

Если батарея не использовалась более 6 месяцев, то следует проверить состояние заряда, см. раздел **6.4.1**. Литий-ионная аккумуляторная батарея имеет ограниченный срок службы и со временем теряет свою способность удерживать заряд. С потерей емкости батареи сокращается длительность автономной работы измерителя.

Хранение:

- □ Перед тем, как отправить измеритель на хранение следует зарядить или разрядить аккумуляторную батарею до 50% ее емкости.
- □ Заряжайте батарею приблизительно до 50% ее емкости не реже одного раза в 6 месяцев.

Транспортирование:

Перед транспортированием литий-ионной аккумуляторной батареи следует уточнить все требования всех соответствующих местных, государственных и международных норм.

- □ Не разбирайте, не ломайте и не разрушайте корпус батарей никаким образом.
- □ Запрещается замыкать накоротко или менять полярность внешних контактов батареи.
- Запрещается помещать батарею в огонь или воду.
- □ Держите батареи подальше от детей.
- Не подвергайте батарею воздействию сильных ударов или вибрации.
- Не пользуйтесь поврежденной батареей.
- В случае повреждения встроенной в литий-ионную батарею схемы безопасности и защиты возможен перегрев, растрескивание или воспламенение батареи.
- □ Не оставляйте батарею на длительную зарядку, если измеритель не используется.
- □ Если из батареи сочится жидкость, то не прикасайтесь к этой жидкости.
- При попадании этой жидкости в глаза не трите их. Следует немедленно тщательно промыть глаза в течение 15 минут до полного удаления остатков электролита и немедленно обратиться за медицинской помощью.

2.3 Список применимых стандартов

Измеритель МІ 3290 изготовлен и испытан в соответствии со следующими стандартами:

Электромагнитная совместимость (ЭМС)					
EN 61326	Электрическое оборудование для измерения, контроля и лабораторного				
	использования – требования к ЭМС Класса А				
Безопасность (приборь	и низкого напряжения)				
EN 61010-1	Требования безопасности к электрооборудованию для измерений, контроля				
	и лабораторного применения – часть 1: Общие требования				
EN 61010 - 2 - 030	Требования безопасности к электрооборудованию для измерений, контроля				
	и лабораторного применения – часть 2-030: Специальные требования к				
	испытательным и измерительным цепям				
EN 61010 - 2 - 032	Требования безопасности к электрооборудованию для измерений, контроля				
	и лабораторного применения – часть 2-032: Специальные требования к				
	переносным и ручным датчикам тока для электрических испытаний и				
	измерений.				
EN 61010-31	Гребования безопасности к переносным сборкам щупов для проведения				
	электрических измерений и испытаний.				
Некоторые дополните	пьные рекомендации				
EN 61557 - 5	Электрическая безопасность в низковольтных распределительных системах				
	с переменным напряжением до 1 000 В или постоянным напряжением до 1				
	500 В. – Оборудование для испытания, измерения или мониторинга мер по				
	защите. Часть 5: Сопротивление заземления.				
IEEE 80 – 2000	Руководство института инженеров по электротехнике и радиоэлектронике по				
	оезопасности систем заземления подстанции переменного тока АС				
IEEE 81 - 2012	Руководство IEEE по измерениям удельного сопротивления заземления,				
	полного сопротивления (импеданса) относительно земли и потенциалов				
	земной поверхности системы заземления.				
IEEE 142	Руководящие указания института инженеров по электротехнике и				
	радиоэлектронике по заземлению промышленных и коммерческих				
IEEE 267 - 2012					
1222 307 - 2012	гуководящие указания института инженеров по электротехнике и радиоалектронике по определению, нарастания потенциала заземления				
	питания (США)				
Питий-ионная аккумуля	итопная батарея				
IFC 62133	Аккумуляторы и батареи содержащие шелочи или другие нечислотные				
	эпектропиты – требования безопасности к портативным герметичным				
	аккумуляторам и к батареям состоящим из них лля переносных устройств				
	акулулитерания к остароли, состоящини не них, для переновных устроновы.				

Замечания о стандартах EN и МЭК:

Текст настоящего руководства содержит в себе ссылки на Европейские стандарты. Все стандарты EX 6xxxx (например, EN 61010) эквивалентны стандартам серии МЭК с такими же номерами (например, МЭК 61010) и отличаются только внесенными поправками.

3 Термины и определения

В этом документе и в описании измерителя заземления используются следующие определения.

Обозначение:	Единицы	Описание:				
Re	Ом	Сопротивление заземления всей системы				
70		Импеданс заземления всей системы				
Rn						
Rc Rc						
f						
	Δ					
750						
Z 301 7 tot		Общий импеданс одного заземлителя (селективный импеданс)				
		Ток сибких клашей 1 (разъем Е1)				
	A	Ток гибких клещей 1 (развем 11)				
11Z 1f2	A	Ток гибких клещей 2 (разъем F2)				
113 1f <i>A</i>	A	Ток гибких клещей 3 (разъем F3)				
7col1	A	Токтиоких клещей 4 (развем F4)				
		импеданс одного заземлителя (селективный импеданс) (разъем F1)				
	Ом	импеданс одного заземлителя (селективный импеданс) (разъем F2)				
	Ом	Импеданс одного заземлителя (селективный импеданс) (разъем F3)				
ZSel4	Ом	импеданс одного заземлителя (селективный импеданс) (разъем F4)				
ρ		удельное сопротивление грунта				
<u></u>	Сопротивление (постоянному току)					
	<u>A</u>	Постоянный ток				
<u>Z</u>	Ом	Импеданс (при измерении переменным током)				
	Іас А Переменный ток					
Vp	б/р	Отношение потенциалов				
R	М	Общее расстояние от Е до вспомогательного штыря				
r	М	Расстояние между штырями Е и S				
φ	[°]	Направление измерения потенциала (0° - 360°)				
lgen	А	Ток генератора				
lf_sum	If sum A Суммарный ток гибких клешей (If sum = If1 + If2 + If3 + If4)					
Uh	В Напряжение Uh (разъем H)					
Us В Напряжение Us (разъем S)						
Ues	В	Напряжение Ues (разъем ÉS)				
Ig w A Ток тросового молниеотвода IIg w = Igen - If sum].						
R	Ом	Действительная часть комплексного числа				
Х	Ом	Мнимая часть комплексного числа				
φ	[°]	Сдвиг фазы между и и і.				
	0.4	Импульсный импеданс (определяется как отношение пикового				
۷	ОМ	напряжения к пиковому току).				
Up	В	Пиковое напряжение.				
lp	A	Пиковый ток.				

Назначение разъемов:

- Е разъем для подключения к электроду заземления испытываемой системы;
- **ES** разъем для подключения к электроду заземления (4-проводный метод);
- **S** разъем для подключения потенциального штыря;
- H разъем для подключения вспомогательного штыря (токового штыря).

Примечания (согласно ст. IEEE 81 - 2012):

- □ Сопротивление заземления активное сопротивление, между замлителем или системой заземления и удаленной землей.
- □ Импеданс заземления векторная сумма активных и реактивных сопротивлений между заземлителем или системой заземления и удаленной землей.

4 Описание измерителя

4.1 Корпус измерителя

Измеритель имеет пластмассовый корпус, который имеет указанную в спецификации защиту.

4.2 Панель оператора

Панель оператора показана на нижеследующем рисунке.

Рисунок 4.1: Панель оператора

1		Цветной ТFT дисплей с сенсорным экраном				
2	GUARD Разъем подключения защитного экранированного проводника					
3	H (C1)	Разъем для подключения вспомогательного штыря (токового штыря)				
4	S (P1)	Разъем для подключения потенциального штыря				
5	ES (P2)	Разъем для подключения к электроду заземления испытываемой системы (4-проводный метод)				
6	E (C2)	Разъем для подключения к электроду заземления испытываемой системы				
7	F1 (Sync)	Разъем для подключения гибких клещей №1 (порт синхронизации)				
8	F2	Разъем для подключения гибких клещей №2				
9	F3	Разъем для подключения гибких клещей №3				
10	F4	Разъем для подключения гибких клещей №4				

11		Разъем для подключения железных клещей
12		Клавиатура (см. раздел 6.1)
13	USB	Порт связи USB (стандартный USB разъем - типа B)
14		Разъем питания (типа С)

Предупреждение!

- Запрещается подсоединять измерительные разъемы (H, S, ES, E) к внешнему постоянному или переменному напряжению 300 В (оборудование CAT IV) во избежание каких-либо повреждений измерителя!
- Не подсоединяйте какие-либо источники напряжения к разъему клещей (11). Он предназначен только для подсоединения токовых клещей. Максимальное входное напряжение составляет 3 В!
- **Использовать только безопасные измерительные принадлежности!**

5 Принадлежности

Различают штатные и дополнительные принадлежности. Дополнительные принадлежности заказываются отдельно (обратитесь к дистрибьютору либо посетите интернет-страницу компании METREL: <u>www.metrel-russia.ru</u>).

В зависимости от наличия различных принадлежностей и функций измерения существуют несколько вариантов комплектации измерителя МІ 3290. Функциональность существующей комплектации можно расширить, заказав дополнительные принадлежности и ключи лицензии.

Доступные функции измерения	Код профиля	ARAB	ARAA	ARAC	ARAD
	Наименование	MI 3290 GF	MI 3290 GL	MI 3290 GP	MI 3290 GX
	Значок	GF	GL	GP	GF <mark>GL</mark> GP
2-, 3-, 4-проводное измерение		•	•	•	•
Метод измерения с одними клец	цами		•		•
2-клещевой метод			•		•
ВЧ-метод (25 кГц)			•		•
Селективное (отдельный заземлитель) измерение и пассивное измерение с помощью гибких клещей				•	•
Метод Веннера и Шлумбергера		•	•	•	•
Импульсное измерение			•		•
Омметр (200 и 7 мА)		٠			•
Измеритель импеданса		•			•
Измерение напряжения прикосновения и напряжения шага		•			•
Проверка провода заземления опоры				•	•
Измерение силы тока железными	и клещами		•		•
Измерение силы тока гибкими клещами				•	•

5.1 Стандартный комплект

- Измеритель МІ 3290
- Потенциальный штырь заземления, 50 см, 2 шт.
- Токовый штырь заземления, 90 см, 2 шт.
- Соединительный провод длиной 2 м, 1 шт. (черный)
- Соединительный провод длиной 5 м, 2 шт. (красный, синий)
- Соединительный провод длиной 50 м, на катушке, 3 шт. (зеленый, черный, синий)
- Экранированный соединительный провод длиной 75 м, на катушке
- □ Зажим типа «G», 1 шт.
- Зажим типа «крокодил», 4 шт., (черный, красный, зеленый, синий)
- Измерительные наконечники, 4 шт., (черный, красный, зеленый, синий)
- □ Комплект соединительных проводов (S 2009) по 2 м, 4 шт. (черный, красный, зеленый, синий)
- Кабель сетевого питания
- Кабель USB
- Сумка для принадлежностей
- ПО для ПК SW Metrel ES Manager
- Руководство по эксплуатации

5.2 Дополнительные принадлежности

Ознакомьтесь с приложенным списком дополнительных принадлежностей и ключей лицензии, которые можно заказать, у своего дистрибьютора.

6 Работа с измерителем

МІ 3290 управляется с помощью кнопок или сенсорного экрана.

6.1 Общее описание назначений кнопок

	Курсорные кнопки предназначены для: выбора соответствующей функции; уменьшения или увеличения значения выбр	ранного параметра.				
-	Кнопка ввода предназначена для:					
	Кнопка выхода предназначена для:					
	возврата в предыдущее меню без изменени	1Й;				
	отмены выполнения измерения.					
	вторая функция:					
		Power Off				
	измерителя (следует нажать и удерживать кнопку 2 сек пока не	Shut down the instrument?				
	появится сообщение					
	подтверждения)	YES NO				
	Аппаратный сброс измерителя (удерживать	нажатой кнопку не менее 10 се				
	Измеритель автоматически выключается, спустя 10 минут после последнего нажатия любой кнопки.					
	Кнопка табуляции предназначена для:					
	развёртывания столбца в панели управлени	ия.				
<i>d</i> ²	Кнопка пуска предназначена для:					
~	запуска/ останова измерения.					

6.2 Общее описание жестов управления сенсорного дисплея:

	сенсорного дисплея:
Phy	 Жест касание (краткое касание экрана одним пальцем) используется для: выбора соответствующей функции; подтверждения выбора; запуска/ останова измерения.
fer	 Жест сдвинуть (нажать, переместить, отпустить) вверх/вниз предназначен для: прокрутки содержимого текущего уровня; перехода на другой вид того же уровня.
удержание	Касание и удержание (не менее 1 секунды) используется для: вызова дополнительных экранных кнопок (виртуальной клавиатуры); выбора испытания или измерения с помощью курсорного селектора.
J €	Экранная кнопка выход предназначена для: возврата в предыдущее меню без изменений; отмены выполнения измерения.

₽							۲	09:44
Name								
Objec	t							
Q V	2 N	3 E	R ·	⁵ T	⁶ Υ ι	J	i c) P
Å	ŝ	, [#]	\$ F	Ğ	Å	Ĵ	? K	Ĺ
shift	Ī	×	Ċ	Ŭ,) B	N	Å	-
t e	ng	;				:	12#	

6.3 Виртуальная клавиатура

Рисунок 6.1: Виртуальная клавиатура

6.4 Дисплей и звук

6.4.1 Индикация разряда батареи и времени

Индикатор показывает уровень заряда батареи и наличие подключенного внешнего зарядного устройства.

	Индикация уровня заряда батарей.
٢]	Низкий уровень заряда батарей. Зарядите батарею.
	Батарея заряжена полностью.
	Индикация отказа батареи.
	Осуществляется заряд батареи (при подключенном зарядном устройстве и наличии батареи).
08:26	Индикация времени (чч:мм).

6.4.2 Сообщения

В поле сообщений отображаются предупреждения и информационные сообщения.

	Условия на входе позволяют выполнить измерение. Принимайте во внимание все отображаемые предупреждения и сообщения.
	Условия на входе не позволяют выполнить измерение. Принимайте во внимание все отображаемые предупреждения и сообщения.
	Остановите измерение.
	Результат(-ы) может быть сохранен.
	Вызов меню для изменения значений параметров и пределов.
\	Переход на предыдущую страницу.
⇔	Переход на следующую страницу.
企	Результат предыдущей страницы.
$\hat{\mathbf{U}}$	Результат следующей страницы.

	Редактирование графика (увеличение, уменьшение и перемещение курсора).
?	Вызов меню помощи.
Q	Просмотр результатов измерения
	Запуск компенсации сопротивления измерительных проводников при измерении в диапазоне «Ом» (при токе 200 и 7 мА).
	Развёртывание панели управления/ вызов дополнительных вариантов выбора.
4	Осторожно! На измерительных разъемах присутствует высокое напряжение. Измерение не будет запущено. Напряжение между клеммами H-E, S-E, ES-E, H-Guard, S-Guard, ES-Guard должно быть не более 50 В скз.
	Выход за предел диапазона измерений. Измерение не будет запущено или отображаться.
-w-	Во время измерения обнаружены сильные электрические помехи. Результат может быть искажен. Предельное значение помехи (±6 %) от измеряемого значения.
X	Идет процесс измерения. Принимайте во внимание все отображаемые предупреждения.
Rc Rp	Высокое сопротивление измерительных штырей. <i>См. главу 15.8.</i>
RcI	Высокое сопротивление токового штыря Rc. <i>См. главу 15.8.</i>
Rp	Высокое сопротивление потенциального штыря Rp. <i>См. главу 15.8.</i>
CAL	Сопротивление измерительных проводов при измерении в диапазоне «Ом» (при токе 200 и 7 мА) не скомпенсировано. Предельное компенсируемое значение сопротивления проводов не более 5 Ом.
CAL	Сопротивление измерительных проводов при измерении в диапазоне «Ом» (при токе 200 и 7 мА) скомпенсировано.
< I	Слабый ток измерения в железных или гибких клещах. Результат может быть искажен. <i>См. главу 15.9</i>
Ŧ	Отрицательный ток измерения в железных или гибких клещах, проверьте правильность расположения гибких клещей [↑ ↓].
×	Разъем H(C1), S(P1), ES(P2) или E(C2) не подключен или определено слишком большое сопротивление. Предельное значение Igen не менее 100 мкА.
\diamond	К разъему F1 – вход для клещей №1 (вход синхронизации) не подключены клещи. Всегда следует сначала подключать гибкие клещи к разъему F1.

Предел

Пользователь может установить нижний предел сопротивления, тока или напряжения. Измеренные значение сопротивления, тока или напряжения сравниваются с этим пределом. Результат принимается, только при отсутствии выхода за предел. Предел индицируется в окне параметров измерения.

Окно сообщения:

□ Такая индикация «Успешно/ безуспешно» отображается только при установленном пределе.

6.4.3 Звуковая сигнализация

Два гудка УСПЕШНО! Означает, что результат измерения находится в ожидаемых пределах.

Один долгий гудок	БЕЗУСПЕШНО! Означает, что результат измерения вышел за ожидаемые пределы.
Непрерывный	Осторожно! На измерительных выводах присутствует высокое напряжение. Измерение не будет запущено. Предельное значение напряжение между клеммами H-E, S-E, ES-E, H-Guard, S-Guard, ES-Guard 50 B скз.
звук	Измеренное омметром значение (при токе 7 мА) находится ниже заданного предела.

6.4.4 Справочные страницы

Вызов справочной страницы.

Меню помощи доступны во всех функциях. Для правильного подсоединения измерителя к испытываемому объекту справочное меню содержит иллюстрации со схемами подклчения. После выбора нужного измерения для вызова соответствующего меню помощи следует нажать кнопку «справка».

Рисунок 6.2: Примеры справочных страниц

7 Главное меню

7.1 Главное меню измерителя

Из главного меню Main menu вызываются вложенные меню основных операций.

Рисунок 7.1: Главное меню

Варианты выбора в главном меню:

8 Общие настройки

В меню общих настроек (**General settings**) можно просмотреть и установить общие параметры и настройки измерителя.

🗅 General Set	(14:47	
۲	23	
Language	Power Save	Date / Time
Ē	E.	ĵĵĵ
Workspace Manager	Auto test groups	Profiles
्यः	¢ ₽	i
Settings	Initial Settings	About

Рисунок 8.1: Меню общих настроек.

Варианты выбора в меню общих настроек «General Settings»:

	Language (язык)		
Language	Выбор языка интерфейса. Дополнительные сведения изложены в разделе 8.1		
A	Power Save (Экономия энергии)		
کی Power Save	Яркость ЖКИ, разрешение/запрет связи по Bluetooth. Дополнительные сведения изложены в разделе 8.2 .		
	Date /Time (дата/ время)		
Date / Time	Дата и время. Дополнительные сведения изложены в разделе 8.3 .		
\	Workspace Manager (диспетчер рабочего поля)		
Le Workspace Manager	Манипуляции с файлами проектов. Дополнительные сведения изложены в разделе 8.9 .		
┟╴═╺	Auto Test Groups (группы автоматических измерений)		
Auto test groups	Работа со списками автоматических измерений. Дополнительные сведения изложены в разделе 8.8 .		
ၜၟၦၦ	Instrument Profile (профиль)		
a a a Profiles	Выбор из доступных профилей. Дополнительные сведения изложены в разделе 8.4 .		
്ക	Settings (настройки)		
Settings	Задание другой системы/ параметров измерения. Дополнительные сведения изложены в разделе 8.5 .		
\$*	Initial Settings (начальные настройки)		
Initial Settings	Заводские настройки. Дополнительные сведения изложены в разделе 8.6 .		
1	About (информация)		
Z About	Сведения об измерителе. Дополнительные сведения изложены в главе 8.7.		

8.1 Язык

В этом меню можно выбрать язык интерфейса измерителя.

Рисунок 8.2: Меню языка

8.2 Экономия энергии

В этом меню можно задать различные настройки экономии энергопотребления.

Рисунок 8.3: Меню экономии энергии

Brightness Яркость – задание уровня яркости Х

	Время отключения ЖКИ – задание длительности простоя перед					
LCD off time	автоматическим отключением экрана. Экран включается по касанию или					
	нажатию любой кнопки.					
	Всегда включен: Модуль Bluetooth в постоянной готовности к связи.					
Bluetooth	Режим экономии: Модуль Bluetooth устанавливается в спящий режим и не					
	функционирует.					

8.3 Дата и время

В этом меню можно установить дату и время измерителя.

-	5 Date	e / Time		ć	08:03
	17	Nov	2014	8	3
	^	^	^	^	^
	\sim	\sim	\sim	\sim	\sim
		Set		Cancel	

Рисунок 8.4: Установка даты и времени

8.4 Профили

В этом меню можно выбрать профиль измерителя из доступных вариантов.

Рисунок 8.5: Меню профилей

В зависимости от задачи и географического места эксплуатации, в измерителе используются различные системы и настройки измерения. Эти специфические настройки хранятся в профилях.

По умолчанию в каждом измерителе активирован хотя бы один профиль. Для добавления дополнительных профилей измерителя следует приобрести соответствующие ключи лицензии.

При наличии нескольких профилей в этом меню можно выбрать нужный. Подробное описание изложено в главе Приложение В.

Варианты выбора

8.5 Настройки

В этом меню устанавливаются различные общие параметры.

Рисунок 8.6: Меню настроек

	Варианты выбора	Описание
Звук клавиш и экрана (Keys & touch sound)	[ON, OFF] (ВКЛ, ВЫКЛ)	Включение/ выключение звукового отклика на нажатие кнопки или касания сенсорного экрана.
Единицы длины (Length Unit)	[m, ft] (м/ футы)	Единицы длины для измерения удельного сопротивления заземления.
Сенсорный экран Touch screen	[ON, OFF] (ВКЛ, ВЫКЛ)	Разрешение/ запрет работы сенсорного экрана.

8.6 Начальные настройки

В данном меню настройки измерителя, параметры измерений и пределы можно сбросить в исходные (заводские) значения.

🖆 Initial Settings	08:18 💶
– Bluetooth module will be initialized. – Instrument settings, measurement parameters and limits will reset to default values. – Memory data will stay intact.	
ок	Cancel

Рисунок 8.7: Меню начальных настроек

Осторожно!

При сбросе в исходные значения будут утеряны следующие пользовательские настройки:

- пределы и параметры измерения,
- □ глобальные параметры и системные настройки меню общих настроек,
- при установке начальных настроек произойдет перезагрузка измерителя.

Примечания:

Останутся следующие пользовательские настройки:

- настройки профиля;
- Данные в памяти.

8.7 Информация

В этом меню можно просмотреть данные измерителя (наименование, серийный номер и дату калибровки).

📩 About	(08:03
Name	MI 3290 EarthAnalyzer
S/N	15440219
FW version	1.0.0
HW version	1.0
Date of calibration	09.Feb.2016
(C) Metrel d.d	., 2015, http://www.metrel.si

Рисунок 8.8: Страница информации об измерителе

8.8 Группы автоматических измерений

Автоматические измерения в измерителе можно распределить по отдельным спискам. Меню групп автоматических измерений предназначено для управления списками измерений, которые хранятся на карте microSD.

8.8.1 Меню групп автоматических измерений

Списки автоматических измерений отображаются в меню групп автоматических измерений. Открытым может быть только один список. Список, выбранный в меню групп автоматических измерений, открывается в главном меню автоматических измерений.

Рисунок 8.9: Меню групп автоматических измерений

8.8.2 Операции в меню групп автоматических измерений «Auto test»:

Варианты выбора

Вызов выбранного списка автоматических измерений. Выбранный ранее список закрывается автоматически. Дополнительные сведения изложены в разделе **8.8.3**.

444

Удаление выбранного списка автоматических измерений. Дополнительные сведения изложены в разделе **8.8.4**.

Вызов вариантов выбора в панели управление/ развёртывание столбца.

8.8.3 Выбор списка автоматических измерений

Порядок выполнения

8.8.4 Удаление списка автоматических измерений

Порядок выполнения

После этого выбранный список удаляется.

8.9 Диспетчер рабочего поля

Диспетчер рабочего поля предназначен для управления различными рабочими полями и файлами экспорта, которые хранятся во внутренней памяти измерителя.

8.9.1 Рабочие поля и файлы экспорта

Выполнение различных задач измерителем MI 3290 можно организовать и структурировать с помощью функций Рабочие поля (Workspaces) и Файлы экспорта (Exports). Эти функции содержат все соответствующие данные отдельной задачи (измерения, параметры, пределы, структура объектов).

Рабочие поля хранятся во внутренней памяти данных в папке WORKSPACES, а файлы экспорта – в папке EXPORTS. Экспортируемые файлы открываются программами компании Metrel и на других приборах. Экспортирование удобно для создания резервных копий важных работ. Для работы в измерителе следует сначала импортировать из списка экпорта (**Exports**) файл экспорта, а затем преобразовать в рабочее поле. Для сохранения данных рабочего поля в файле экспорта их следует сначала экспортировать из списка рабочего поля в файле экспорта их следует сначала экспортировать из списка рабочего поля в файле экспорта их следует сначала экспортировать из списка рабочего поля (**Workspace**), а затем преобразовать в файл экспорта (**Export**).

8.9.2 Основное меню диспетчера рабочего поля

В диспетчере рабочего поля (Workspace manager) рабочие поля и файлы экспорта отображаются в двух раздельных списках Workspaces и Exports, соответственно.

🗅 Workspace Manager	ú 111 00:02	🗂 Workspace Manager	¢ •••• • 06:19
WORKSPACES:	■↔●	EXPORTS:	∎↔●
Grand hotel Union	+	Grand hotel Union	
Hotel Cubo		Hotel Cubo	
Hotel Slon		Hotel Slon	
Grand hotel Toplice		Grand hotel Toplice	
	444		

Рисунок 8.10: Меню диспетчера рабочего поля

8.9.3 Операции с рабочими полями

Измеритель не допускает одновременный вызов нескольких рабочих полей. Рабочее поле, выбранное в списке диспетчера рабочего поля, откроется в организаторе памяти.

🗅 Workspace Manager	(111 08:15
WORKSPACES:	•
Grand hotel Union	×
• Hotel Cubo	<≱
Hotel Slon	

Рисунок 8.11: Меню выбора рабочего поля

Варианты выбора

Метка рабочего поля, открытого в организаторе памяти. Вызов рабочего поля, выбранного в организаторе памяти. Дополнительные сведения изложены в разделе **8.9.6**.

Удаление выбранного рабочего поля. Дополнительные сведения изложены в разделе **8.9.7**.

Добавление нового рабочего поля. Дополнительные сведения изложены в главе **8.9.5**.

Экспорт данных рабочего поля в файл экспорта Дополнительные сведения изложены в главе 8.9.9.

8.9.4 Операции с файлами экспорта

🗢 Workspace Manager	(06:19
EXPORTS:	
Grand hotel Union	×
Hotel Cubo	
Hotel Slon	
Grand hotel Toplice	
	444

Варианты выбора

Удаление выбранного файла экспорта. Дополнительные сведения изложены в разделе **8.9.7**.

Импорт нового рабочего поля из файла экспорта Дополнительные сведения изложены в главе **8.9.8**.

8.9.5 Добавление нового рабочего поля

Порядок выполнения

0	Workspace Manager 08:10 WORKSPACES: Image: mail of the second	Новые рабочие поля можно добавить из главного меню диспетчера рабочего поля.
2	Image: constraint of the second state of the second sta	Вызов функции добавления нового рабочего поля. После этого появится клавиатура для ввода наименования нового рабочего поля.
3	Workspace Manager WORKSPACES: Grand hotel Union Hotel Cubo	После подтверждения наименование нового рабочего поля, оно появится в списке главного меню диспетчера проектов.
8.9.6 Вызов рабочего поля

Порядок выполнения

8.9.7 Удаление рабочего поля/ файла экспорта

Порядок выполнения

Рабочее поле/ файл экспорта удаляется из соответствующего списка (Workspace / Export).

8.9.8 Импортирование рабочего поля

8.9.9 Экспортирование рабочего поля

В списке рабочих полей диспетчера выберите рабочее поле для экспортирования в файл экспорта.

			Вызов функции экспорта
2	 Workspace Manager WORKSPACES: Gran Hote Do you wish to export workspace? Hote YES NO Grand hotel Toplice 	06:22 ▼ * *	Перед экспортированием выбра поля появится запрос на подтве
3	 Workspace Manager WORKSPACES: Grand Workspace exported to folder Hotel (Grand hotel Toplice_001 Hotel 5 OK Grand hotel Toplice 	06:22 × × * * 06:37 * *	Рабочее поле экспортируется в добавляется в список Exports . Примечание: Если файл с таким же имен существует, то к наименова экспортируемого добавится (например, имя_файла_001 имя_файла_002, имя_файл

анного рабочего ерждение.

файл экспорта и

ем уже нию окончание

, , ia_003).

9 Организатор памяти

Организатор памяти – это инструмент для работы и сохранения данных измерений.

9.1 Меню организатора памяти

Память измерителя имеет многоуровневую структуру. Иерархия объектов структуры показана на рисунке 9.1. Данные группируются по проектам, объектам (здание, электростанция, подстанция, опора ЛЭП и т. д.) и по испытываемым устройствам (молниеотвод, стержень заземления, трансформатор, сетка, ограждение, ...). Подробное описание изложено в Приложении А.

Рисунок 9.1: Предлагаемая по умолчанию иерархия древовидной структуры

9.1.1 Состояния измерения

Каждое измерение обладает:

- состоянием (успешно выполненное, безуспешно выполненное или отсутствие состояния);
- наименованием;
- результатами;
- пределами и параметрами измерения.

Измерение может быть одиночным измерением или автоматическим измерением. Дополнительные сведения изложены в главах *10* и *12*.

Состояния одиночных измерений

пустое автоматическое измерение с пустыми одиночными измерениями.

Каждый элемент структуры имеет:

- □ значок;
- □ наименование;
- 🛛 параметры.

Дополнительно они могут иметь:

индикацию состояния измерений в структуре и комментарий или прикрепленный файл.

Project

9.1.3 Индикация состояния измерения подэлементов структуры

Общее состояние измерений под каждым элементом/ подэлементом структуры видно без развёртывания иерархического меню. Это удобно для быстрой оценки состояния измерения и для руководства в проведении измерений.

Варианты выбо	ора		
Project	Под выбранным элементом структуры результаты измерений отсутствуют. Измерения еще предстоит провести.	 Memory Organizer > Node > Project > Memory Organizer > Node > Project > Building > Lightning Rod Ω - Meter (7mA) 3 - pole 	09:08
Project	Один или несколько результатов измерения под выбранным объектом структуры безуспешные. Под выбранным элементом структуры выполнены еще не все измерения.	 Memory Organizer Project Building Sightning Rod 3 - pole Ω - Meter (200mA) Ω - Meter (7mA) 	09:07 09:04 09:04 09:05 111
Project	Все измерения под выбранным элементом структуры выполнены, но один или несколько результатов измерений безуспешны.	 Memory Organizer Project Project	09:07 Q 09:05 09:05 09:05 09:05 09:07

Примечание:

Индикация состояния отсутствует, если все результаты измерений под каждым элементом/ подэлементом структуры выполнены успешно или если это пустой элемент/ подэлемент (без измерений).

Оили

9.1.4 Операции в иерархическом меню

В организаторе памяти различные операции можно выполнить с помощью панели управления в правой части экрана. Предлагаемые возможные операции зависят от элемента, выбранного в организаторе.

9.1.4.1 Операции по измерениям (завершённые или пустые)

Рисунок 9.3: Выбранные в иерархическом меню измерения

Варианты выбора

Просмотр результатов измерения Измеритель переключается на экран памяти.

Запуск нового измерения.

Измеритель переключается на окно запуска измерения.

Клонирование измерения.

Выбранное измерение можно скопировать как пустое измерение под тем же элементом структуры. Дополнительные сведения изложены в разделе **9.1.4.7**.

Копирование и вставка измерения.

Выбранное измерение можно скопировать и вставить как пустое измерение в любое место древовидной структуры. Допускается многократная вставка. Дополнительные сведения изложены в разделе **9.1.4.10**.

Добавление нового измерения. Измеритель переходит в меню для добавления измерений. Дополнительные сведения изложены в разделе **9.1.4.5**.

Удаление измерения.

Выбранное измерение можно удалить. Выдается запрос на подтверждение удаления. Дополнительные сведения изложены в разделе *9.1.4.12*.

9.1.4.2 Операции с элементами структуры

Следует сначала выбрать элемент структуры.

Рисунок 9.4: Элемент структуры выбирается в иерархическом меню

Новое наименование выбранного элемента структуры можно ввести с клавиатуры. Дополнительные сведения изложены в главе **9.1.4.13**.

9.1.4.3 Просмотр/редактирование параметров и приложений элементов структуры

В этом меню отображаются параметры и их содержимое. Для редактирования выбранного параметра следует коснуться его или нажать кнопки табуляции и ввода для вызова меню редактирования параметров.

Порядок в	ыполнения	
1	Memory Organizer 09:52 Workspace 1-0 Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system	Выберите элемент структуры для редактирования.
2		Выберите параметры в панели управления.
3	Memory Organizer / Parameters 09:57 Project 1-1-2015 Name (designation) of project Project 1-1-2015 Description (of project)	Пример меню параметров. В этом меню для редактирования следует выбрать параметр в раскрывающемся списке и ввести его значение с клавиатуры. Дополнительные сведения о работе с клавиатурой изложены в главе 6.
2a	Ø	Выберите приложения в панели управления.
36	Memory Organizer / Attachments © 09:58 Project 1-1-2015	Приложения Можно увидеть наименование приложения. Измеритель не поддерживает операции с приложениями.

44

9.1.4.4 Добавление нового элемента структуры

Это меню предназначено для добавления новых элементов структуры в иерархическое меню. Можно выбрать новый элемент структуры и затем добавить его в иерархическое меню.

Порядок выполнения

9.1.4.5 Добавление нового измерения

В этом меню можно задать новые пустые измерения и затем добавить их в иерархическое меню. Тип, функция и параметры измерения сначала выбираются, а затем редактируются в выбранном элементе структуры.

Под выбранным проектом структуры добавится новое пустое измерение.

9.1.4.6 Клонирование элемента структуры

В этом меню можно скопировать (клонировать) выбранный элемент структуры на тот же уровень иерархической структуры. Клонированный элемент структуры имеет то же имя, что и оригинал.

Порядок вы	полнения	
D	Memory Organizer 12:12 Workspace 1-0 Image: Clone Image: Clone Image: Clone	Выберите элемент структуры для клонирования.
2		Нажмите кнопку клонирования в панели управления.
3	Clone: Project 12:12 Include structure parameters Include structure parameters Include structure attachments Include structures Include sub structures Include sub measurements Include sub measurements Include sub measurements Clone Cancel	На экране отобразится меню клонирования элемента структуры. Можно установить или снять флажки с подэлементов клонируемого элемента. Дополнительные сведения изложены в главе 9.1.4.9 .
4	Clone Cancel	Выбранный элемент копируется (клонируется) на тот же уровень иерархической структуры. Отмена клонирования. Изменения в иерархическую структуру не вносятся.
5	Memory Organizer 12:12 Workspace 1-0 ▷ > Node ● > Node ● > Project 1.1.2015 ● Project 1.2.2015 ● Project	На экране отобразиться новый элемент структуры.

9.1.4.7 Клонирование измерения

С использованием этой функции можно копировать (клонировать) выбранное пустое или выполненное измерение на тот же уровень иерархической структуры.

Порядок выполнения

9.1.4.8 Копирование и вставка элемента структуры

В этом меню выбранный элемент структуры можно скопировать и вставить в любое допустимое место иерархической структуры.

Порядок в	ыполнения		
1	Memory Organizer Workspace 1-0	 Attachments Clone Copy Delete Rename 	Выберите элемент структуры для копирования.
2			Нажмите кнопку копирования в панели управления.
3	Memory Organizer Workspace 1–0 Node Node Noject 1-1-2015 Suilding Node.2-0		Выберите место, в которое следует скопировать элемент структуры.
4			Нажмите кнопку вставки в панели управления.

5	 Paste: Project 1-1-2015 Include structure parameters Include structure attachments Include sub structures Include sub measurements Paste Cancel 	На экране отобразится меню вставки элемента структуры. Перед вставкой следует задать, какие подэлементы выбранного элемента структуры следует тоже скопировать. Дополнительные сведения изложены в разделе 9.1.4.9 .
6	Paste Cancel	Вставка выбранного элемента структуры и его подэлементов для копирования в выбранное место иерархической структуры. Возврат в иерархическое меню оператора без внесения изменений.
7	▲ Memory Organizer 12:33 Workspace 1-0 ● ● >< Node	На экране отобразиться новый элемент структуры. <i>Примечание:</i> П Команду вставки можно выполнять как однократно, так и многократно.

9.1.4.9 Клонирование и копирование подэлементов выбранного элемента структуры

Если клонируется, копируется или вставляется выбранный элемент структуры, то следует также дополнительно выбрать его подэлементы. При выборе имеются следующие варианты:

Варианты выбора

Include structure parameters	Также будут клонированы/ вставлены и параметры выбранного элемента структуры.
Include structure attachments	Также будут клонированы/ вставлены и приложения выбранного элемента структуры.
Include sub structures	Также клонируются/ вставляются элементы подуровней выбранного элемента структуры.
Include sub measurements	Также клонируются/ вставляются измерения выбранного элемента структуры и его подуровней.

9.1.4.10 Копирование и вставка измерения

В этом меню выбранное измерение можно скопировать и вставить в любое допустимое место иерархической структуры.

Порядок выполнения Memory Organizer (_____ 12:43 Q Recall results Project 1-1-2015 -🔵 Clone -Building Выберите измерение для копирования. 1 Lightning Rod Сору 3 - pole Add Measureme 🗷 🚬 🔉 Node.2-0 Delete

2		Нажмите кнопку копирования в панели управления.
3	Memory Organizer 12:46 Node Image: Second state	Выберите место для вставки измерения.
4		Нажмите кнопку вставки в панели управления.
\$	Memory Organizer 12:45 3 - pole 12:22 Node. 2-0 Project 2 Sub-Station Grounding Rod 3 - pole	 В выбранном элементе структуры отобразится новое (пустое) измерение. Примечание: Команду вставки можно выполнять как однократно, так и многократно.

9.1.4.11 Удаление элемента структуры

В этом меню можно удалить выбранный элемент структуры.

Порядок выполнения

9.1.4.12 Удаление измерения.

В этом меню можно удалить выбранное измерение.

Порядок выполнения 🗂 Memory Organizer 12:47 Node 🔪 Project 1-1-2015 Building -Выберите измерение для удаления. 📶 Lightning Rod 3 - pole 12:22 🔵 4 - pole Нажмите кнопку удаления в панели управления. 2 12:48 Memory Organizer Node > Are you sure you want to delete? -3 4 – pole Появится запрос на подтверждение. NO YES 🔵 4 - pole ••• Выбранное измерение удалено. YES 4 Возврат в иерархическое меню оператора без NO внесения изменений. (_____ 12:50 ₽ Memory Organizer Project 1-1-201 Q 🗉 🕋 Building 3 📶 Lightning Rod -Структура без удалённого измерения. (5) 3 - pole 12:22 >____ Node.2-0 -🗉 🚺 Project 2

9.1.4.13 Переименование элемента структуры.

В этом меню можно переименовать выбранный элемент структуры.

Порядок выполнения

9.1.4.14 Повторный вызов и повторное проведение выбранного измерения

Порядок выполнения

\$	¹ 3 - pole ¹ 03:18 ² 2e ^Ω ¹ le ^Ω ¹ le ^Ω ¹ le ^Π ¹ f ^Π ¹ f ^Π ¹ f ^Π ¹ f ¹ f ¹ Test Mode ¹ f ⁴ f	Откроется стартовый экран повторного проведения измерения.
5a	Parameters & Limits 13:37 Test Mode single > Test Frequency 55 Hz > Test Voltage <	Параметры и пределы можно просмотреть и измерить.
6		Нажмите кнопку пуска в панели управления.
Ø	¹ 3 - pole ¹ 03:19 Ze O.699 Ω ¹ 03:19 Ie 17.2 mA Rc 2.01 kΩ f 55 Hz Rp 2.01 kΩ Re 0.67 Ω f 55 Hz Rp 2.01 kΩ Re 0.67 Ω Test Mode Test Voltage 40 V Limit(20) 2.1 2.1	Результаты/ подрезультаты после повторного проведения вызванного измерения.
8	Memory Organizer 13:38 Node Q Project 1.1-2015 Q Building Q Lightning Rod Q 3 - pole 12:22 12:22 11:12	Нажмите кнопку сохранения результатов в панели управления. Повторно проведенное измерение сохраняется под тем же элементом структуры, что и исходное. Отобразится обновлённая структура памяти с вновь выполненным измерением.

10 Одиночные измерения

Одиночные измерения можно выбирать в главном меню одиночных измерений или в главном меню организатора памяти.

10.1 Режимы выбора

В главном меню одиночного измерения есть четыре режима выбора одиночных измерений.

Варианты выбора

	Весь список
Single Tests 03:20 2P 3P 4P 2-pole 3-pole 4-pole S Iron SFIex 2C Selective (Iron Selective (Flex 2 C lamps HF Passive pole AFF Passive (Flex.Cl Specific Venner Method 4(1)	Одиночное измерение выбирается по всему списку вариантов. Они отображаются в таком же порядке (по умолчанию).
	Последнее использованное
Single Tests 03:21	Отображаются последние 9 использованных одиночных измерений.
	Сортировка по группам
Single Tests03:21EarthSpecificPulsePotentAC ZDC RTestCurrentCheck(11)(11)	Схожие одиночные измерения отсортированы по группам.
	Курсорный селектор

10.1.1 Страницы одиночных измерений

В окнах одиночных измерений отображаются результаты, подрезультаты, пределы и параметры измерений. Также отображаются текущие состояния, предупреждения и прочие сведения.

Рисунок 10.1: Структура окна одиночного измерения при измерении сопротивления изоляции.

R¢ Rp

Предупреждающие значки и поле сообщения

10.1.2 Установка параметров и пределов одиночных измерений

④ 1	Подтверждение новых значений параметров и предела.
------------	--

10.1.3 Окно результатов одиночного измерения

Рисунок 10.2: Пример страницы результатов одиночного измерения при 4-проводном измерении

Варианты выбора (по завершению измерения)

>	Запуск нового измерения.
	 Сохранение результатов Новое измерение было выбрано и запущено из структурного объекта иерархической структуры: измерение будет сохранено под выбранным объектом структуры. Новое измерение было запущено из главного меню одиночного измерения: по умолчанию будет предложено сохранение под последним выбранным объектом структуры, пользователь может выбрать иной объект структуры или создать новый. по нажатию кнопки в меню организатора памяти измерение сохраняется под выбранны местом. в меню организатора памяти измерение: результат или результаты измерения будут добавлены в измерение, состояние измерение сменится с «пустое» на «завершённое». в иерархической структуре было выбрано, просмотрено и затем перезапущено уже выполненное измерение:
?	Вызов справки.
Test Mode single Test Frequency 2.63 kHz Test Voltage 40 V Limit(Re) 30 fl	Вызов меню для изменения значений параметров и пределов выбранных измерений. Подробное описание порядка изменения значений параметров и пределов изложено в разделе <i>10.1.2</i> .
удержание	Вызов курсорного селектора для выбора измерения или измерения.

10.1.4 Просмотр графика

▲ 4 - pole 🗰 0			03:30			
58/div	Ze1	0.12 Ω	f	329 нz	2/2	
						ÌĽ,
						¢
100 Hz		1 1	Hz		10 kHz	444

4	– pole		۲	03:29
58/div	ze 10.12 Ω	f 1.50 kHz	2/2	企
				$\hat{\mathbf{U}}$
		-		4
				⇔
100 Hz	: 1 kH	lz 10 kH:	z	444

Рисунок 10.3: Страница графического отображения результата (пример 4-проводного измерения с разверткой)

10.1.5 Повторный вызов страницы результатов одиночного измерения

Рисунок 10.4: Повторно вызванные результаты выбранного измерения, пример результатов 4-проводного измерения

Варианты выбора

11 Испытания и измерения

11.1 Измерения сопротивления заземления

Результат измерения сопротивления заземления относится к важнейшим параметрам по обеспечению защиты от поражения электрическим током. Измерителем МІ 3290 можно проверить главную шину заземления, систему молниезащиты, локальные цепи заземления, удельное сопротивление грунта и т.д.

MI 3290 позволяет проводить измерения сопротивления заземления различными методами. Оператор выбирает подходящий, в зависимости от испытываемой системы заземления.

Заземление		Измерение	Режим измерения		Диаграмм а	НЧ	ВЧ	Фильтр	Измерение напряжения
Полное сопротивление	Активное сопротивл ение								
		2-проводное измерение	одиночный	развертка	Ze (f)	55 Гц	15 кГц	БПΦ	20/40 B
Ze	Re	3-проводное измерение	одиночный	развертка	Ze (f)	55 Гц	15кГц	БПΦ	20/40 B
		4-проводное измерение	одиночный	развертка	Ze (f)	55 Гц	15 кГц	БПΦ	20/40 B
Zsel	/	Селективное измерение (железные клещи)	одиночный	развертка	Zsel (f)	55 Гц	1,5 кГц	БПФ	40 B
Ze		2 клещей	непрерывный	/	/	82 Гц	329 Гц	БΠΦ	40 B
1	Re	ВЧ – измерение (25 кГц)	одиночный	/	/	/	25 кГц	БПΦ	40 B
7tot	/	Селективное измер. (гибкие клещи 1—4 шт.)	одиночный	развертка	Ztot (f) Zsel1-4 (f)	55 Гц	1,5 кГц	БΠΦ	40 B
Ζίοι	/	Пассивное измер. (гибкие клещи 1—4 шт.)	непрерывный	/	/	45 Гц	150 Гц	БПФ	/

Таблица 11.1: Измерения заземления, которые можно выполнить с помощью MI 3290

11.1.1 2-проводное измерение

Двухпроводное измерение можно применять, если доступна хорошо заземленная вспомогательная точка (например, заземление источника/пунктов распределения через провод нейтрали, водопровод и т.д.). Основным преимуществом данного метода является отсутствие необходимости использовать в процессе измерений штыри. Метод является быстрым и относительно надежным.

Рисунок 11.2: Пример 2-проводного измерения

При проведении такого измерения разъем Н подсоединяется к вспомогательной точке, МI 3290 выдает синусоидальный ток *I*_e, который проводится в заземление. Чтобы обеспечить большую силу тока, значение Rc должно быть как можно меньше. Rc можно снизить применением параллельных штырей или воспользовавшись вспомогательной системой заземления в качестве вспомогательного штыря. Большой ток повысит устойчивость к помехам от паразитных токов заземления. Импеданс заземления *Z*_e определяется по закону Ома. Обычно значение *R*_c значительно ниже, чем *Z*_e. В таком случае результат можно принять как ≈ *Z*_e.

$$Z_{\varepsilon} [\Omega] = \frac{U_{H-\varepsilon}[V]}{I_{\varepsilon}[A]} \qquad \qquad Z_{\varepsilon} \gg R_{\varepsilon}$$

Ζ	импеданс заземления;
R _c	импеданс вспомогательной точки (Н);
U _{H-E}	испытательное напряжение между разъемами Н и Е;
l _e	поданный испытательный ток.

О подключении разъема Н подробно описано в Приложении С.

Измерение можно запустить со страницы 2-проводного измерения. Перед проведением измерения можно отредактировать следующие параметры: режим измерения (Test Mode), напряжение измерения (Test Voltage), частота измерения (Test Frequency) и предел (Limit (Ze)).

Рисунок 11.3: Пример меню 2-проводного измерения

Параметры 2-проводного измерения:

Режим	Режим измерения: single (одиночный), sweep (развертка)	
измерения		
Частота	Частота измерения:55 Гц, 82 Гц, 164 Гц, 329 Гц, 659 Гц, 1,31 кГц,	
измерения*	1,50 кГц, 2,63 кГц, 3,29 кГц, 6,59 кГц, 13,1 кГц, 15,0 кГц	
Испыательное	Испытательное напряжение: 20 или 40 В	
напряжение		
Предел	Предел (Ze): Откл.; 0,1 Ом – 5,00 кОм	
* TOTIL KO D DOV(404		

только в режиме одиночных измерений

Порядок проведения 2-проводного измерения:

- Выберите функцию 2-проводного измерения.
- Установите параметры измерения (режим, напряжение, частоту и предел).
- Соберите схему согласно рис. 11.2.
- Нажмите кнопку запуска измерения.
- Подождите, пока результаты измерений не отобразятся на экране.
- Курсорными кнопками можно переключаться между графическим и цифровым отображением результатов.
- Сохраните результаты (на выбор).

Рисунок 11.4: Пример цифрового представления результата 2-проводного измерения

Примечания:

- Перед запуском измерения принимайте во внимание предупреждающие сообщения!
- На результат измерения могут повлиять интенсивные помехи по току и напряжению в заземлении. В таком случае на дисплее отображается предупреждающий значок «помеха».
- При измерении на высоких частотах пользуйтесь экранированным кабелем (Н) с подключением экрана к разъему GUARD.
- Высокое сопротивление Rc может исказить результаты измерений.

11.1.2 З-проводное измерение

Трехпроводное измерение относится к стандартным методам проверки сопротивления заземления. Этот способ является единственным, если отсутствует хорошо заземленная вспомогательная точка. Измерения осуществляются с помощью двух штырей заземления. Недостатком использования трех проводов является то, что к результату добавляется контактное сопротивление разъема Е.

Рисунок 11.6: Пример 3-проводного измерения

При проведении такого измерения через вспомогательный токовый штырь (H) по заземлению пропускается синусоидальный ток I_e . Чтобы обеспечить большую силу тока, импеданс вспомогательного штыря (H) должен быть как можно меньше. Импеданс R_c можно снизить применением нескольких параллельных штырей. Большой ток повысит устойчивость к помехам от паразитных токов заземления. Падение напряжения измеряется на вспомогательном потенциальном штыре (S). Импеданс заземления Z_e определяется по формуле:

$$Z_{\varepsilon} \left[\Omega\right] = \frac{U_{s-\varepsilon}[V]}{I_{\varepsilon}[A]}$$

где: Z_eимпеданс заземления; I_eподанный испытательный ток; U_{S-E}испытательное напряжение между разъемами S и E.

Как устанавливать вспомогательные штыри подробно описано в Приложении С.

Измерение можно запустить со страницы 3-проводного измерения. Перед проведением измерения можно отредактировать следующие параметры: режим измерения (**Test Mode**), напряжение измерения (**Test Voltage**), частота измерения (**Test Frequency**) и предел (**Limit (Ze**)).

Рисунок 11.7: Пример меню 3-проводного измерения

Параметры 3-проводного измерения:

Режим	Режим измерения: single (одиночный), sweep (развертка)		
измерения			
Частота	Частота измерения:55 Гц, 82 Гц, 164 Гц, 329 Гц, 659 Гц, 1.31 кГц,		
измерения*	1,50 кГц, 2,63 кГц, 3,29 кГц, 6,59 кГц, 13,1 кГц, 15,0 кГц		
Испытательное	Испытательное напряжение: 20 или 40 В		
напряжение			
Предел	Предел (Ze) – на выбор: OFF, 0,1 Ом – 5,00 кОм (Откл.; 0,1 Ом – 5,00 кОм)		
т.	U U		

* только в режиме одиночных измерений

Порядок проведения 3-проводного измерения:

- □ Выберите функцию 3-проводного измерения «3 pole».
- □ Установите параметры измерения (режим, напряжение, частоту и предел).
- □ Соберите схему согласно рис. 11.6
- □ Нажмите кнопку запуска измерения.
- Подождите, пока результаты измерений не отобразятся на экране.
- Курсорными кнопками можно переключаться между графическим и цифровым отображением результатов.
- Сохраните результаты (на выбор).

Рисунок 11.8: Пример цифрового представления результата 3-проводного измерения

Рисунок 11.9: Пример графического представления результата 3-проводного измерения

Примечания:

- Перед запуском измерения принимайте во внимание предупреждающие сообщения!
- На результат измерения могут повлиять интенсивные помехи в заземлении. В таком случае на дисплее отображается предупреждающий значок «помеха».
- При измерении на высоких частотах пользуйтесь экранированным кабелем (H) с подключением экрана к разъему GUARD (экран).
- Высокий импеданс штырей S и H может исказить результаты измерений. В этом случае отображаются предупреждения "Rp" и "Rc". При этом отсутствует индикация «успешно/ безуспешно»;
- □ Штыри следует располагать на достаточном удалении от объекта измерений.

11.1.3 4-проводное измерение

Преимуществом использования четырехпроводного измерения является отсутствие влияния на результаты измерения значений сопротивления измерительных проводов и контакта между разъемом Е и исследуемым объектом.

Рисунок 11.10: Пример 4-проводного измерения

При проведении такого измерения через вспомогательный токовый штырь (H) по заземлению пропускается синусоидальный ток *I*_e. Чтобы обеспечить большую силу тока, импеданс вспомогательного штыря (H) должен быть как можно меньше. Импеданс *R*_c можно снизить применением нескольких параллельных штырей. Падение напряжения измеряется между потенциальным штырем (S) и разъемом (ES). Импеданс заземления Ze определяется определяется по формуле:

$$Z_{\epsilon}[\Omega] = \frac{U_{s-\epsilon s}[V]}{I_{\epsilon}[A]}$$

где:

Ze	импеданс заземления;
_ ا	Поданный испытательный ток;
Ů	_{S-ES} испытательное напряжение между клеммами S и ES

Как устанавливать вспомогательные штыри (H) и (S) подробно описано в Приложении C.

Измерение можно запустить со страницы 4-проводного измерения. Перед проведением измерения можно отредактировать следующие параметры: режим измерения (**Test Mode**), напряжение измерения (**Test Voltage**), частота измерения (**Test Frequency**) и предел (**Limit (Ze**)).

Рисунок 11.11: Пример меню 4-проводного измерения

Параметры 4-проводного измерения:

Режим	Режим измерения: single (одиночный), sweep (развертка).		
измерения			
Частота	Частота измерения: [55 Гц, 82 Гц, 164 Гц, 329 Гц, 659 Гц, 1,31 кГц,		
измерения*	1,50 кГц, 2,63 кГц, 3,29 кГц, 6,59 кГц, 13,1 кГц, 15,0 кГц].		
Испытательное	Испытательное напряжение : 20 или 40 В		
напряжение			
Предел	Предел (Ze):Откл.; 0,1 Ом – 5,00 кОм		
*			

* только в режиме одиночных измерений

Порядок проведения 4-проводного измерения:

- Выберите функцию 4-проводного измерения «4 pole».
- Э Установите параметры измерения (режим, напряжение, частоту и предел).
- □ Соберите схему согласно рис. 11.10.
- Нажмите кнопку запуска измерения.
- □ Подождите, пока результаты измерений не отобразятся на экране.
- Курсорными кнопками можно переключаться между графическим и цифровым отображением результатов.
- Сохраните результаты (при необходимости).

Рисунок 11.12: Пример цифрового представления результата 4-проводного измерения

Рисунок 11.13: Пример графического представления результата 4-проводного измерения

Примечания:

- Перед запуском измерения принимайте во внимание предупреждающие сообщения!
- На результат измерения могут повлиять интенсивные помехи. В таком случае на дисплее отображается предупреждающий значок «помеха».
- При измерении на высоких частотах пользуйтесь экранированным кабелем (H) с подключением экрана к разъему GUARD (экран).
- Высокий импеданс штырей S и H может исказить результаты измерений. В этом случае отображаются предупреждения "Rp" и "Rc". Оценка результата в виде «Успешно / безуспешно» не выполняется;
- □ Штыри следует располагать на достаточном удалении от объекта измерений.

11.1.4 Селективное измерение (железные клещи)

Данный метод измерений подходит для измерения сопротивления заземления отдельных электродов в системе заземления. В процессе измерения электроды системы заземления отсоединять не потребуется. Для таких измерений применяется 4-проводная схема.

Рисунок 11.14: Пример селективного измерения (железные клещи)

При проведении такого измерения через вспомогательный токовый штырь (H) по заземлению пропускается синусоидальный ток I_e . Чтобы обеспечить большую силу тока, импеданс вспомогательного токового штыря (H) должен быть как можно меньше. Импеданс R_c можно снизить применением нескольких параллельных штырей. Измеряется падение напряжения между потенциальным штырем (S) и разъемом (ES). С помощью клещей измеряется селективный ток I_c через выбранный пользователем электрод заземления (Z_{e1}). Селективный импеданс заземления Z_{sel} определяется по формуле:

$$Z_{zel}[\Omega] = \frac{U_{z-ES}[V]}{I_{c}[A] * N} = \frac{U_{z-ES}[V]}{I_{zel}[A]} \qquad I_{c}[A] = \frac{Z_{e1} || Z_{e2} || Z_{e3}}{Z_{e1}} * I_{e}$$

где:

Ζ _{εοι}	селективный импеданс заземления:
	поданный испытательный ток;
۱ _c	ток, измеренный клещами;
Ň	коэффициент трансформации клешей (зависит от модели):
U _{S-FS}	испытательное напряжение между разъемами S и ES.
010	

Как устанавливать вспомогательные штыри (H) и (S) подробно описано в Приложении C.

Измерение можно запустить со страницы Selective (Iron Clamp) (селективное измерение (железные клещи)). Перед проведением измерения можно отредактировать следующие параметры: режим измерения (Test Mode), тип клещей (Clamp Type), частота измерения (Test Frequency) и предел (Limit (Ze)).

Рисунок 11.15: Меню селективного измерения (железные клещи)

Параметры селективного измерения (железные клещи)

Режим	Режим измерения: single (одиночное), sweep (развертка).
измерения	
Частота	Частота измерения: [55 Гц, 82 Гц, 164 Гц, 329 Гц, 659 Гц, 1,31 кГц,
измерения*	1,50 кГц
Тип клещей	Тип токоизмерительных клещей: [А1018].
Предел (Zsel)	Предел (Ze) – на выбор: Откл.; 0,1 Ом – 5,00 кОм.

* только в режиме одиночных измерений

Порядок проведения селективного измерения (железные клещи)

- □ Выберите функцию Selective (Iron Clamp) (селективное измерение железными клещами).
- Установите параметры измерения (режим, тип клещей, частоту и предел).
 - □ Соберите схему согласно рис. 11.14.
 - Нажмите кнопку запуска измерения.
 - □ Подождите, пока результаты измерений не отобразятся на экране.
 - Курсорными кнопками можно переключаться между графическим и цифровым отображением результатов.
 - Сохраните результаты (при необходимости).

Рисунок 11.16: Пример цифрового отображения результатов селективного измерения (железными клещами).

Рисунок 11.17: Пример графического отображения результатов селективного измерения (железными клещами).

Примечания:

- Перед запуском измерения принимайте во внимание предупреждающие сообщения!
- На результат измерения могут повлиять интенсивные помехи. В таком случае на дисплее отображается предупреждающий значок «помеха».
- При измерении на высоких частотах пользуйтесь экранированным кабелем (H) с подключением экрана к разъему GUARD (экран).
- Высокий импеданс штырей S и H может исказить результаты измерений. В этом случае отображаются предупреждения "Rp" и "Rc". Оценка результата в виде «соответствует / не соответствует» не выполняется;
- □ Штыри следует располагать на достаточном удалении от объекта измерений.

двумя

11.1.5 Измерение сопротивления токоизмерительными клещами

2-клещевой метод применяется для измерения сопротивления заземляющих стержней, кабелей, подземных соединений и т.д. В данном случае для подачи тестовых токов требуется замкнутый контур заземления. Метод особенно подходит для измерений в городских районах, где обычно отсутствует возможность использовать вспомогательные штыри.

Рисунок 11.18: Пример измерение заземления двумя клещами

Тестовое напряжение в систему заземления подается через токовые клещи, которые подключены к задающему генератору. Это напряжение создает в контуре заземления тестовый ток. Если общий импеданс контура заземления соединенных параллельно электродов Z_{e1} , Z_{e2} , Z_{e3} и Z_{e4} намного ниже импеданса испытываемого электрода Z_{e4} , то результат можно считать $\approx Z_{e4}$. Импеданс любого другого электрода можно измерить, установив на него токоизмерительные клещи. В этом примере импеданс отдельного электрода вычиляется по формуле:

$$Z_{\epsilon^4} + (Z_{\epsilon^1} \| Z_{\epsilon^2} \| Z_{\epsilon^3}) [\Omega] = \frac{U_{H-E}[V] * \frac{1}{N}}{I_{\epsilon}[A]}$$

где:	
Z _{e1-e4}	импеданс заземления;
I _c	ток, измеренный железными клещами;
Ū _{H-E}	. испытательное напряжение между разъемами Н и Е;
Ν	коэффициент трансформации генерирующих клещей
	(зависит от модели).

Примечание:

□ Измерение заземления 2 клещами еще называют измерением сопротивления контура.

Измерение можно запустить со страницы измерения двумя клещами «2 Clamps». Перед проведением измерения можно отредактировать следующие параметры: тип токоизмерительных клещей (Measurement Clamp Type), частота измерения (Test Frequency), тип генерирующих клещей (Generator Clamp Type) и предел (Limit (Ze)).

Рисунок 11.19: Меню измерение заземления двумя клещами

Параметры измерения двумя клещами:			
Тип измерительных клещей Тип токоизмерительных клещей: [А1018].			
Частота измерения*	Частота измерения: 82 Гц, 164 Гц, 329 Гц.		
Тип генерирующих клещей	Тип генерирующих клещей: [А1019].		
Предел (Ze)	Предел (Ze): откл., 0,1 – 40 Ом.		

Порядок проведения измерения двумя клещами:

- □ Выберите функцию измерения с 2 клещами 2 Clamps
- Установите параметры измерения (тип клещей, частоту и предел)
- □ Соберите схему согласно рис. 11.18
- Нажмите кнопку запуска измерения
- Подождите, пока результаты измерений не отобразятся на экране.
- Для остановки измерения нажмите кнопку пуска снова.
- Сохраните результаты (при необходимости).

Рисунок 11.20: Пример результата измерения двумя клещами

Примечания:

- **Перед запуском измерения принимайте во внимание предупреждающие сообщения!**
- □ На результат измерения могут повлиять интенсивные помехи. В таком случае на дисплее отображается предупреждающий значок «помеха».

11.1.6 Высокочастотное (25 кГц) измерение сопротивления заземления

Преимущество высокочастотного метода измерения состоит в устранении помех от заземления смежной опоры, которое соединено с тросовым молниеотводом (автоматическая компенсация индуктивных компонентов). В данном случае применяется 3-проводная схема.

Рисунок 11.21: Пример высокочастотного (25 кГц) измерения сопротивления заземления

При проведении такого измерения через вспомогательный токовый штырь (H) по заземлению пропускается синусоидальный ток *I_e* частотой 25 кГц. Чтобы обеспечить большую силу тока, импеданс вспомогательного токового штыря (H) должен быть как можно меньше. Импеданс *R_c* можно снизить применением нескольких параллельных штырей. Большой ток повысит устойчивость к помехам от паразитных токов заземления. Падение напряжения измеряется на вспомогательном потенциальном штыре (S). Сопротивление заземления *R_e* определяется по формуле:

$$R_{\varepsilon}[\Omega] = \frac{U_{s-\varepsilon}[V]}{I_{\varepsilon}[A]}$$

где:	
Rактивное сопротивление заземл	ения;
I _е поданный испытательный ток;	
U _{S-E} испытательное напряжение меж	ду разъемами S и E.

Примечание:

• Автоматическая компенсация индуктивных компонентов.

Сопротивление тросового молниеотвода между опорами 1 и 2 скомпенсировано применением высокочастотного метода.

Измерение можно запустить со страницы ВЧ-измерения «H**F-Earth Resistance (25 kHz)**». Перед запуском можно изменить значение предела (параметр Limit (Re)).

Рисунок 11.22: Компенсация при высокочастотном методе измерения Типовое значение индуктивности провода ЛЭП составляет 0,2 – 200 мГн.

Рисунок 11.23: Меню ВЧ-измерения сопротивления заземления

Параметры измерения при ВЧ (25 кГц) измерении сопротивления заземления Предел (Re): откл., 1 – 100 Ом.

Порядок проведения высокочастотного измерения сопротивления заземления:

- Выберите функцию измерения HF-Earth Resistance (25 kHz) (ВЧ измерение
- сопротивления заземления (25 кГц)).
- Установите параметры/ пределы измерений.
- □ Соберите схему согласно рис. 11.21.
- □ Воспользуйтесь экранированным кабелем с подключением к защитному разъему.
- Нажмите кнопку запуска измерения
- □ Подождите, пока результаты измерений не отобразятся на экране.
- Сохраните результаты (при необходимости).

Рисунок 11.24: Пример результатов ВЧ- измерения сопротивления заземления

Примечания:

- Перед запуском измерения принимайте во внимание предупреждающие сообщения!
- На результат измерения могут повлиять интенсивные помехи. В таком случае на дисплее отображается предупреждающий значок «помеха».
- Высокий импеданс штырей S и H может исказить результаты измерений. В этом случае отображаются предупреждения "Rp" и "Rc". Оценка результата в виде «соответствует / не соответствует» не выполняется;
- □ Штыри следует располагать на достаточном удалении от объекта измерений.

11.1.7 Селективное измерение (гибкие клещи)

Данный метод подходит для измерения сопротивления отдельных электродов заземления в системе. Электроды системы заземления не должны отсоединяться в процессе измерений. В данном случае применяется 4-проводная схема.

Рисунок 11.25: Пример селективного измерения (гибкие клещи 1 – 4 шт.)

При проведении такого измерения через вспомогательный токовый штырь (H) по заземлению пропускается синусоидальный ток I_e . Чтобы обеспечить большую силу тока, импеданс вспомогательного штыря (H) должен быть как можно меньше. Импеданс R_c можно снизить применением нескольких параллельных штырей. Большой ток повысит устойчивость к помехам. Падение напряжения измеряется между вспомогательным потенциальным штырем (S) и разъемом (ES). Измеряются селективные токи I_{f1-4} через выбранные пользователем электроды заземления Z_{sel1-4} . Импеданс отдельных электродов и общий импеданс определяются по формулам:

$$\frac{1}{Z_{tot}} \left[\frac{1}{\Omega} \right] = \sum_{i=1}^{4} \frac{1}{Z_{sel_i}} \left[\frac{1}{\Omega} \right] Z_{sel_i} \left[\Omega \right] = \frac{U_{S-ES}[V]}{I_{f_i}[A]}$$

где: Z_{tot}общий селективный импеданс заземления, Z_{sel_i}селективный импеданс заземления, I_{t_i}ток, измеренный гибкими клещами, U_{S-ES}испытательное напряжение между разъемами S и ES.

Как устанавливать вспомогательные штыри (H) и (S) подробно описано в Приложении C.

Измерение можно запустить со страницы Selective (Flex Clamps 1-4) (селективное измерение (гибкие клещи 1 – 4)). Перед проведением измерения можно отредактировать следующие параметры: режим измерения (Test Mode), частота измерения (Test Frequency), количество витков в клещах F1 - F4 (Number of turns F1 - F4), и предел (Limit (Ze)).

Selective (Flex Clamps 1-4)	15:02
1/2	
fHz RpΩ ZeΩ	\$
Test Mode single Test Frequency 164 Hz Number of turns F1 1	⇔
Number of turns F2 1 Number of turns F3 1 Number of turns F4 1	

Selective (Flex Clamps 1-4)	(1111) 15:03		
lf1Α Zsel1Ω	2/2		
If2A Zsel2Ω	=		
lf4A Zsel4Ω f	Hz 🗢		
Test Mode single Test Frequency 164 Hz Number of turns F1 1	⇔		
Number of turns F2 1 Number of turns F3 1 Number of turns F4 1			

Рисунок 11.26: Меню селективного измерения (гибкими клещами 1 - 4)

Пареметры селективного измерения (гибкие клещи 1 – 4):

Режим измерения	Режим измерения: single (одиночное), sweep (развертка).
Частота	Частота измерения: 55 Гц, 82 Гц, 164 Гц, 329 Гц, 659 Гц, 1,31 кГц, 1,50 кГц.
измерения*	
Количество	Количество витков гибких клещей, подключенных к разъему «F1» [1, 2, 3, 4, 5,
витков F1	6].
Количество	Количество витков гибких клещей, подключенных к разъему «F2» [1, 2, 3, 4, 5,
витков F2	6].
Количество	Количество витков гибких клещей, подключенных к разъему «F3» [1, 2, 3, 4, 5,
витков F3	6].
Количество	Количество витков гибких клещей, подключенных к разъему «F4» [1, 2, 3, 4, 5,
витков F4	6].
Предел (Ztot)	Предел (Ze) :откл.; 0,1 Ом – 5,00 кОм.

* только в режиме одиночных измерений

Порядок проведения селективного измерения (гибкие клещи 1 - 4)

Вызовите функцию селективного измерения гибкими клещами Selective (Flex Clamps 1-4)

- Установите параметры измерения (режим, частоту, количество витков и предел).
- Соберите схему согласно рис . 11.25.
- Нажмите кнопку запуска измерения
- Подождите, пока результаты измерений не отобразятся на экране.
- Курсорными кнопками можно переключаться между графическим и цифровым отображением результатов.
- Сохраните результаты (при необходимости).

Примечания:

- □ Перед запуском измерения принимайте во внимание предупреждающие сообщения!
- □ На результат измерения могут повлиять интенсивные.
- □ При измерении на высоких частотах пользуйтесь экранированным кабелем (H) с подключением экрана к разъему GUARD (экран).
- Высокий импеданс штырей S и H может исказить результаты измерений. В этом случае отображаются предупреждения "Rp" и "Rc".
- Штыри следует располагать на достаточном удалении от объекта измерений.
- □ При работе только с одними, двумя или тремя гибкими клещами одни из них обязательно следует подключать к разъему F1 (порт синхронизации).
- Для правильного измерения фазы следите, чтобы стрелка на корпусе клещей указывала в нужную сторону.
- Следите за правильностью указания в параметрах измерения количества витков клещей.

11.1.8 Пассивные измерения гибкими клещами

При пассивном измерении для определения сопротивления отдельных точек заземления измеряется «индукционный ток» или ток провода заземления (тросового молниеотвода) *I*_{gw}. В этом случае используется только один вспомогательный потенциальный штырь (S).

Рисунок 11.30: Пример пассивного измерения (гибкими клещами)

Этот «индукционный ток» *I*_{gw} проходит в заземление через сопротивления *Z*_{sel1/1}, *Z*_{sel2/1}, *Z*_{sel1/2} и *Z*_{sel2/2}. Более высокий ток помехи повышает общий результат измерения. Падение напряжения измеряется с помощью вспомогательного потенциального штыря (S). Импеданс отдельных электродов и общий импеданс определяются по формулам:

$$\frac{1}{Z_{tot}} \begin{bmatrix} \frac{1}{\Omega} \end{bmatrix} = \sum_{i=1}^{4} \frac{1}{Z_{sel_i/1}} \begin{bmatrix} \frac{1}{\Omega} \end{bmatrix} \qquad Z_{sel_i/1} \begin{bmatrix} \Omega \end{bmatrix} = \frac{U_{s-E}[V]}{I_{f_i}[A]}$$

где:

Z _{tot}	общий селективный импеданс заземления,
Z _{sel1-4}	иселективный импеданс заземления,
I _{f1-4} .	ток, измеренный гибкими клещами,
U _{S-E} .	испытательное напряжение между разъемами S и E.

Примечание:

□ В данном примере «индукционный ток» - *I_{gw}* в действительности является током индуктивной связи между проводами L1 (*i*₁), L2 (*i*₂), L3 (*i*₃) и тросовым молниеотводом. Частота этого тока такая же, как и токов L1, L2 и L3 (сетевая частота 50 или 60 Гц).

Рисунок 11.31: Цепь замещения для пассивного измерения (гибкими клещами)

Измерение можно запустить со страницы пассивного измерения гибкими клещами « **Passive (Flex Clamps)**». Перед проведением измерения можно отредактировать следующие параметры: количество витков в клещах F1 - F4 (**Number of turns F1 - F4**), и предел (**Limit (Ztot)**).

➡ Passive (Flex Clamps 1-4)	(15:03
Ztot 0	1/2
UsV fHz	\$
Number of turns F1 1 Number of turns F2 1 Number of turns F2 1	⇔
Number of turns F4 1 Limit(Ztot) Off	

Рисунок 11.32: Меню пассивного измерения гибкими клещами

Параметры пассивного измерения (гибкими клещами):

Количество	Количество витков гибких клещей, подключенных к разъему «F1» [1, 2, 3, 4, 5,
витков F1	6].
Количество	Количество витков гибких клещей, подключенных к разъему «F2» [1, 2, 3, 4, 5,
витков F2	6].
Количество	Количество витков гибких клещей, подключенных к разъему «F3» [1, 2, 3, 4, 5,
витков F3	6].
Количество	Количество витков гибких клещей, подключенных к разъему «F4» [1, 2, 3, 4, 5,
витков F4	6].
Предел (Ztot)	Предел (Ztot):Откл.: 0.1 Ом – 5.00 кОм.

Порядок пассивного измерения гибкими клещами

- Вызовите функцию пассивного измерения гибкими клещами «Passive (Flex Clamps)»
- Установите параметры измерения (количество витков и предел).
- □ Соберите схему согласно рис. 11.30.
- Нажмите кнопку запуска измерения
- □ Подождите, пока результаты измерений не отобразятся на экране.
- Для остановки измерения нажмите кнопку пуска снова.
- Курсорными кнопками можно переключаться между различными страницами отображения результатов.
- Сохраните результаты (при необходимости).

Рисунок 11.33: Примеры результатов пассивного измерения (гибкими клещами) — Z_{tot}

Рисунок 11.34: Пример результатов пассивного измерения (гибкими клещами) – Z_{sel1-4}

Примечания:

- □ Перед запуском измерения принимайте во внимание предупреждающие сообщения!
- На результат измерения могут повлиять интенсивные помехи. В таком случае на дисплее отображается предупреждающий значок «помеха».
- □ Штыри следует располагать на достаточном удалении от объекта измерений.
- □ При работе только с одними, двумя или тремя гибкими клещами одни из них обязательно следует подключать к разъему F1 (порт синхронизации).
- Для правильного измерения фазы следите, чтобы стрелка на корпусе клещей указывала в нужную сторону.
- Следите за правильностью указания в параметрах измерения количества витков клещей.

11.2 Измерения удельного сопротивления грунта

Измерение удельного сопротивления грунта необходимо для получения информации для точного расчета систем заземления, например, высоковольтных распределительных стоек (столбов), крупных промышленных установок, систем молниеотводов и т.д. В этом измерении используется переменное тестовое напряжение. Постоянное напряжение не используется во избежание возможных электрохимических процессов в грунте. Удельное сопротивление грунта имеет размерность Ом•м или Ом•фут.

Удельное сопротивление грунта	Измерение	Режим измерения	Расстояние	Предел	Фильтр	Измерение Напряжение
•	Метод Веннера	одиночное	м/футы	Да	БПΦ	20/ 40 B
ρ	Метод Шлумбергера	одиночное	м/футы	да	БПΦ	20/ 40 B

Таблица 11.35: Измерения удельного сопротивления грунта, которые можно выполнить измерителем МІ 3290

11.2.1 Общие понятия об удельном сопротивлении грунта

Что такое удельное сопротивление грунта? Это сопротивление одного кубического метра грунта, смотрите нижеследующий поясняющий рисунок.

Рисунок 11.36: Иллюстрация удельного сопротивления грунта

В таблице представлены ориентировочные величины удельных сопротивлений для нескольких типовых видов грунта.

Тип грунта	Удельное	Удельное	
	сопротпивление	сопротивление	
	грунта,	грунта,	
	Ом•м	Ом•фут	
вспаханная земля	90 – 150	295 – 492	
бетон	150 – 500	492 – 1640	
влажный гравий	200 - 400	656 – 1312	
мелкий сухой песок	500	1640	
известняк	500 – 1000	1640 – 3280	
сухой гравий	1000 – 2000	3280 - 6562	
каменистый грунт	100 – 3000	328 – 9842	

11.2.2 Измерение методом Веннера

Четыре штыря забиваются по прямой линии на расстоянии **a** на глубину **b < a/20**. Расстояние **a** должно находиться в пределах от 0,1 до 29,9 м. Подключите соединительные провода к штырям, а затем к разъемам H, S, ES и E.

Рисунок 11.37: Пример измерения методом Веннера

Согласно методу Веннера удельное сопротивление грунта при равных расстояниях между штырями определяется по формуле:

ΓД	e:
R	сопротивление заземления, измеренное 4-проводным методом,
а	расстояние между штырями,
b	глубина погружения штырей в грунт,
π	математическая константа (3,14159).

Измерение можно запустить со страницы метода Веннера «Wenner Method». Перед проведением измерения можно изменить следующие параметры: напряжение измерения (Test Voltage), расстояние а (Distance a) и предел (Limit (р)).

Рисунок 11.38: Меню измерения методом Веннера

Параметры измерения методом Вернера:

Напряжение	Испытательное напряжение: 20 или 40 В
измерения	
Расстояние а	Интервал а между штырями,: [0,1 – 49,9 м] или [1 – 200 футов]
Предел (р)	Предел удельного сопротивления грунта: Откл.; 0,1 Ом•м – 15 кОм•м. или в интервале: Откл.; 0,1 Ом•фут – 40 кОм•фут.

Порядок проведения измерения методом Веннера

- □ Выберите функцию измерения методом Веннера «Wenner Method».
- □ Установите параметры измерения (напряжение, интервал и предел).
- □ Соберите схему согласно рис. 11.37.
- Нажмите кнопку запуска измерения.
- □ Подождите, пока результаты измерений не отобразятся на экране.
- Сохраните результаты (при необходимости).

Рисунок 11.39: Пример результатов измерения методом Веннера

Примечания:

- **Перед запуском измерения принимайте во внимание предупреждающие сообщения!**
- □ На результат измерения могут повлиять интенсивные помехи. В таком случае на дисплее отображается предупреждающий значок «помеха».
- Высокий импеданс штырей S и H может исказить результаты измерений. В этом случае отображаются предупреждения "Rp" и "Rc". Оценка результата в виде «соответствует / не соответствует» не выполняется;
- □ Штыри следует располагать на достаточном удалении от объекта измерений.

11.2.3 Измерение методом Шлумбергера

Одну пару штырей (ES и S) установите на расстоянии **d** друг от друга, а вторую пару (E и H) – на расстоянии **a** от штырей ES и S, соответственно. Все штыри следует забить по прямой линии на глубину **b**, соблюдая условие**b** << a,d. Расстояние **d** должно составить от 0,1 до 29,9 м, а расстояние **a** должно быть **a>2*d**. Подключите соединительные провода к штырям, а затем к разъемам измерителя H, S, ES и E.

Рисунок 11.40: Пример измерения методом Шлумбергера

Согласно методу Шлумбергера удельное сопротивление грунта при неравных расстояниях между штырями определяется по формуле:

$$\rho_{\text{Шлумбергер}} \begin{bmatrix} \Omega m \end{bmatrix} = \frac{\pi \cdot a \begin{bmatrix} m \end{bmatrix} \cdot (a+d) \begin{bmatrix} m \end{bmatrix} \cdot R_e \begin{bmatrix} \Omega \end{bmatrix}}{d \begin{bmatrix} m \end{bmatrix}} \qquad b \ll a \cdot d$$

a > 2 * d

где: R_e......сопротивление заземления, измеренное 4-проводным методом, арасстояние между штырями (E, ES) и (H, S), dрасстояние между штырями (S, ES), bглубина погружения штырей, пматематическая константа (3,14159). Измерение можно запустить со страницы метода Шлумбергера «Schlumberger Method». Перед проведением измерения можно изменить следующие параметры: напряжение измерения (Test Voltage), расстояние а (Distance a) расстояние d (Distance d) и предел (Limit (ρ)).

Рисунок 11.41: Меню измерения методом Шлумбергера

Параметры измерения методом Шлумбергера:					
Напряжение	Напряжение Испытательное напряжение: 20 или 40 В				
испытания					
Расстояние а	Расстояние а между штырями: 0,1 – 49,9 м или 1 – 200 футов				
Расстояние d	Расстояние d между штырями: 0,1 – 49,9 м или 1 – 200 футов				
Предел (о)	Предел:откл.: 0.1 Ом•м – 15 кОм•м.или 0.1 Ом•фут – 40 кОм•фут.				

Порядок проведения измерения методом Шлумбергера:

- Выберите функцию измерения методом Шлумбергера «Schlumberger Method».
- □ Установите параметры измерения (напряжение, расстояния и предел).
- □ Соберите схему согласно рис. 11.40.
- □ Нажмите кнопку запуска измерения.
- Подождите, пока результаты измерений не отобразятся на экране.
- Сохраните результаты (при необходимости).

Рисунок 11.42: Пример результатов измерения методом Шлумбергера

Примечания:

- Перед запуском измерения принимайте во внимание предупреждающие сообщения!
- □ На результат измерения могут повлиять интенсивные помехи. В таком случае на дисплее отображается предупреждающий значок «помеха».
- Высокий импеданс штырей S и H может исказить результаты измерений. В этом случае отображаются предупреждения "Rp" и "Rc". Оценка результата в виде «соответствует / не соответствует» не выполняется;
- □ Штыри следует располагать на достаточном удалении от объекта измерений.

11.3 Измерение импеданса заземления импульсным методом

Импульсный импеданс системы заземления является полезным параметром, который позволяет предсказать поведение данной системы при возникновении переходного процесса.

11.3.1 Импульсное измерение

Для этого типа измерения обычно применяют 3-проводный метод или метод разности потенциалов. Измерения осуществляются с помощью двух штырей. К недостатку трехпроводного измерения относится добавление к результату контактного сопротивления разъема Е.

Рисунок 11.43: Пример измерения импульсным методом

При проведении такого измерения через вспомогательный штырь (H) по заземлению пропускается импульс тока (10/350 мкс). Чтобы обеспечить большую силу тока, импеданс вспомогательного штыря (H) должен быть как можно меньше. Импеданс Rc можно снизить применением нескольких параллельных штырей. Большой импульс тока повысит устойчивость к помехам от паразитных токов заземления. Пиковое напряжение измеряется на вспомогательном потенциальном штыре (S). Импеданс заземления Zp определяется как отношение пикового напряжения к пиковому току. В этом примере импульсный импеданс определяется по формуле:

Примечание:

Сопротивление токового штыря Rc и потенциального штыря Rp измеряются 3-проводным методом на постоянной частоте 3,29 кГц тестовым напряжением холостого хода ~40 В.

Испытание можно запустить со страницы импульсного измерения «Impulse measurement». Перед запуском измерения можно изменить значение предела (параметр Limit (Zp)).

Рисунок 11.44: Меню импульсного измерения

Параметры импульсного измерения:

Предел (Zp) Предел (Zp): откл., 1 – 100 Ом.

Порядок проведения импульсного измерения

- □ Вызовите функцию импульсного измерения «Impulse measurement».
- □ Установите параметры измерения (предел).
- □ Соберите схему согласно рис. 11.43.
- □ Нажмите кнопку запуска измерения
- □ Подождите, пока результаты измерений не отобразятся на экране.
- Сохраните результаты (при необходимости).

Рисунок 11.45: Пример результата импульсного измерения

Примечания:

- □ Перед запуском измерения принимайте во внимание предупреждающие сообщения!
- □ На результат измерения могут повлиять интенсивные помехи. В таком случае на дисплее отображается предупреждающий значок «помеха».
- Высокий импеданс штырей S и H может исказить результаты измерений. В этом случае отображаются предупреждения "Rp" и "Rc". Оценка результата в виде «соответствует / не соответствует» не выполняется;
- Штыри должны быть расположены на значительном расстоянии от объекта измерений.

11.4 Измерение сопротивления проводников постоянным током

Сопротивление постоянному току	Измерение	Режим измерения	Метод измерения	Предел	Фильтр	Измерительный ток
	Омметр (200 мА)	одиночное	2- проводный	да	Постоянный ток	200 мА
к	Омметр (7 мА)	непрерывное	2-	да	Постоянный	7 мА
			проводный		ток	

Таблица 11.46: Измерения сопротивления постоянному току, которые можно выполнить измерителем МІ 3290

11.4.1 Измерение сопротивления проводников током 200 мА

Измерение сопротивления выполняется для проверки эффективности мер защиты от поражения электрическим током. Измерение сопротивления производится постоянным током силой 200 мА.

В этом примере сопротивление заземления определяется по формуле:

$$R[\Omega] = \frac{U_{DC}[V]}{I_{DC}[A]}$$

где:

H	
R	сопротивление проводника,
	постоянный ток, протекающий от разъема С1 к разъему С2,
Ű,	измеренное постоянное напряжение межлу разъемами С1 и С2.
- uc	

Измерение можно запустить со страницы омметра «**Ω** - Meter (200 mA)». Перед запуском измерения можно изменить значение предела (параметр Limit (R)).

CAL

15:16

 (\mathbf{O})

444

leter (200mA

4.84

Idc 206 mA

Параметры для измерения Ом-метром (200 мА): Предел (R) Предел (R), устанавливается в интервале: Откл.; 0,1 – 40 Ом.

Порядок проведения измерения сопротивления током 200 мА:

- Вызовите функцию измерения омметр (200 мА) «Ω Meter (200 mA)».
- Установите параметры измерения (предел).
- Подключите измерительные провода к измерителю.
- □ Можно компенсировать провода при использовании 2-проводного метода.
- □ Соберите схему согласно рис. 11.47.
- □ Нажмите кнопку запуска измерения
- Подождите, пока результаты измерений не отобразятся на экране.
- Сохраните результаты (при необходимости).

Примечание:

□ Перед запуском измерения принимайте во внимание предупреждающие сообщения!

11.4.2 Измерение сопротивления проводников током 7 мА

В общем, эта функция работает, как обычный омметр при низком тестовом токе. Измерение выполняется непрерывно и без переключения полярности измерительного напряжения. Данная функция может применяться для проверки целостности индуктивных элементов.

Рисунок 11.50: Пример измерения сопротивления проводников током 7 мА.

В этом примере сопротивление определяется по формуле:

$$R\left[\Omega\right] = \frac{U_{DC}[V]}{I_{DC}[A]}$$

где:

Rсопротивление проводника,

I_{dc}постоянный тестовый ток;

U_{dc}измеренное постоянное напряжение между разъемами С1 и С2.

Измерение можно запустить со страницы омметра «**Ω** - Meter (7 mA)». Перед запуском измерения можно изменить следующие параметры: звуковая сигнализация и предел (Sound и Limit (R)).

Рисунок 11.51: Меню измерения током 7 мА

Параметры для измерения Ом-метром (7 мА):

Рисунок 11.52: Пример отображения результатов измерения током 7 мА

ie: откл.; 1 Ом – 15,0 кОм.
ie: откл.; 1 Ом

Порядок проведения измерения током 7 мА:

- Вызовите функцию измерения омметр 7 мА «Ω Meter (7 mA)».
- □ Установите параметры измерения (звук и предел).
- □ Подключите измерительные провода к измерителю.
- Компенсируйте провода (при необходимости).
- □ Соберите схему согласно рис..11.50.
- Нажмите кнопку запуска измерения
- □ Подождите, пока результаты измерений не отобразятся на экране.
- □ Нажмите кнопку остановки измерения.
- Сохраните результаты (при необходимости).

Примечание:

□ Перед запуском измерения принимайте во внимание предупреждающие сообщения!

11.4.2.1 Компенсация сопротивления измерительных проводов

В этом разделе описана процедура компенсации сопротивления измерительных проводов для обеих функций проверки целостности цепи (омметр 200 мА и 7 мА). При измерении 2-проводным методом необходима компенсация сопротивления измерительных проводов и внутренних сопротивлений измерителя для исключения их влияния на результат. Компенсация сопротивления проводов является важным фактором для получения корректного результата. После проведения компенсации

на экране появится такой значок 💟

Схемы подключения для компенсации сопротивления измерительных проводов

Рисунок 11.53: Замкнутые измерительные провода

Порядок компенсации сопротивления измерительных проводов:

CAL

- Вызовите функцию омметра 200 мА или 7 мА «Ω Meter (200 mA) или (7 mA) ».
- Подсоедините измерительный кабель к измерителю и замкните накоротко его концы см. рис.11.53.
 - Нажмите кнопку

для проведения компенсации сопротивления соединительных

Примечания:

- **Предельное компенсируемое сопротивления проводов составляет 5 Ом.**
- При проведении компенсации подается постоянный ток 200 мА.

11.5 Измерение импеданса напряжением переменного тока

В общем случае полное сопротивление (импеданс) состоит из действительной и мнимой составляющих (активного и реактивного сопротивления), см. рис.11.54.

Рисунок 11.54: Графическая иллюстрация комплексного значения импеданса

11.5.1 Измерение импеданса

В этом примере значение импеданса определяется по формуле:

$$Z\left[\Omega\right] = \frac{U_{AC}[V]}{I_{AC}[A]}$$

где:

Zимпеданс, I_{ac}переменный ток, протекающий от разъема C1 к разъему C2, U_{ac}измеренное переменное напряжение между разъемами P1 и P2 (4проводная схема) Измерение можно запустить со страницы измерения импеданса «**Impedance Meter**». Перед проведением измерения можно изменить следующие параметры: режим измерения (**Test Mode**), частота измерения (**Test Frequency**), напряжение измерения (**Test Voltage**) и предел (**Limit (Z)**).

Рисунок 11.56: Меню измерения импеданса

Параметры измерения импеданса:

Режим	Режим измерения: одиночный,развертка.
измерения	
Частота	Частота измерения: 55 Гц, 82 Гц, 164 Гц, 329 Гц, 659 Гц, 1,31 кГц,
измерения*	1,50 кГц, 2,63 кГц, 3,29 кГц, 6,59 кГц, 13,1 кГц, 15,0 кГц.
Тестовое	Тестовое напряжение: 20 или 40 В
напряжение	
Предел (Z)	Предел (R), устанавливается в интервале: откл.; 1 Ом – 15,0 кОм.

* только в режиме одиночных измерений

Порядок проведения измерения импеданса:

- □ Вызовите функцию измерения импеданса «Impedance Meter».
- □ Установите параметры измерения (режим, напряжение, частоту и предел).
- □ Соберите схему согласно рис. 11.55.
- Нажмите кнопку запуска измерения
- Подождите, пока результаты измерений не отобразятся на экране.
- Курсорными кнопками можно переключаться между графическим и цифровым отображением результатов.
- Сохраните результаты (при необходимости).

Рисунок 11.57: Пример цифрового представления результата измерения импеданса

Рисунок 11.58: Пример графического представления результата измерения импеданса

Примечание:

Перед запуском измерения принимайте во внимание предупреждающие сообщения!

11.6 Потенциал грунта

Находящийся в грунте заземляющий электрод/ решетка имеет некоторое сопротивление, величина которого зависит от сечения, площади поверхности электрода (и состояния этой поверхности), а также удельного сопротивления окружающего грунта. Сопротивление заземления не сконцентрировано в одной точке, а распределено вокруг электрода. Правильно выполненное заземление открытых токопроводящих частей гарантирует отсутствие на них опасного напряжения выше определенного уровня в случае короткого замыкания.

В случае неисправности ток повреждения уйдет на заземляющий электрод. Есть типовое распределение напряжения вокруг электрода (т. н. «воронка напряжения»). Наибольшая часть падения напряжения концентрируется вокруг заземляющего электрода. На рис 11.59 показано, как уходящий в землю через заземляющий электрод ток повреждения создает разность потенциалов (шаговое напряжение и контактное напряжение).

Токи повреждения у объектов распределения мощности (подстанций, распределительных стоек, станций) могут достигать довольно высоких значений, вплоть до 200 кА. Такие токи являются причиной возникновения опасных разностей потенциалов (шагового и контактного напряжений). При наличии подземных металлических соединений (штатных или неизвестных) воронка напряжений может принять нетиповую форму, а опасные напряжения возникать вдали от места повреждения. В связи с этим необходимо тщательно изучить распределение напряжения вокруг таких объектов в случае аварии.

На нижеследующем рисунке проиллюстрировано распределение шагового и контактного напряжений.

Рисунок 11.59: Опасные напряжения при возникновении тока повреждения.

где: U_sшаговое напряжение, U_cконтактное напряжение, U_Fнапряжение повреждения.

В стандарте IEC 61140 определены следующие нормы максимально допустимого времени воздействия контактного напряжения:

Максимальное время воздействия	Напряжение
>5 s to ∞	Uc ≤ ~50 В или ≤ =120 В
< 0,4 c	Uc ≤ ~115 В или ≤ =180 В
< 0,2 c	Uc ≤ ~200 B
< 0,04 c	$Uc \le \sim 250 B$

Таблица 11.60: Нормы максимально допустимого времени воздействия контактного напряжения

Допустимое продолжительное контактное напряжение не должно превышать 50 В.

11.6.1 Измерение потенциала

Локальную разность потенциалов можно просто измерить по 3-проводной схеме с заданием расстояний *R* (между E - H) и *r* (между E - S), а также дополнительного направления *φ*.

Рисунок 11.61: Пример схемы измерения потенциала

В этом примере отношение потенциалов определяется по формуле:

$$V_{P} = 1 - \left(\frac{U_{S}[V]}{U_{H}[V]}\right)$$

где: V_P.....отношение потенциалов между разъемами S и H (0 - 1), U_H.....тестовое напряжение между разъемами H и E, U_S.....тестовое напряжение между разъемами S и E.

Рисунок 11.62: Пример распределения потенциала (прямая линия)

Рисунок 11.63: Пример распределения потенциала (вокруг сооружения)

Испытание можно запустить со страницы измерения потенциала «**Potential**». Перед проведением измерения можно изменить следующие параметры: напряжение измерения (**Test Voltage**), расстояние r (**Distance r**) расстояние R (**Distance R**) и предел (**Limit (ρ**)).

Рисунок 11.64: Меню измерения соотношения потенциалов

Параметры измерения потенциала грунта:		
Частота	Частота измерения: 55 Гц, 82 Гц, 164 Гц, 329 Гц.	
измерения		
Расстояние r	Расстояние r – между Е и штырем S: 1 – 90 м.	
Расстояние R	Расстояние R – между Е и штырем Н: 1 – 500 м.	

Направление ф Направление ф или угол измерения потенциала: 0° – 360°

Порядок проведения измерения потенциала грунта:

- D Вызовите функцию измерения потенциала «Potential measurement».
- □ Установите параметры измерения (частота, расстояния r и R, а также направление).
- □ Соберите схему согласно рис .11.61.
- Нажмите кнопку запуска измерения
- Подождите, пока результаты измерений не отобразятся на экране.
- Сохраните результаты (при необходимости).

Рисунок 11.65: Пример отображения результатов измерения потенциала

Примечания:

- **Перед запуском измерения принимайте во внимание предупреждающие сообщения!**
- На результат измерения могут повлиять интенсивные помехи. В таком случае на дисплее отображается предупреждающий значок «помеха».

11.6.2 Основные теоретические сведения о напряжении прикосновения и шаговом напряжении

Шаговое напряжение

Измеряется напряжение между двумя точками поверхности земли, которые расположены на расстоянии 1 м (на расстоянии шага) друг от друга, см. рис.11.66. Ступни ног имитируются металлическими пластинами (S2053). Напряжение между зондами измеряется вольтметром измерительного блока МІ 3295М,обладающим внутренним сопротивлением 1 кОм, которое имитирует сопротивление человеческого тела.

Рисунок 11.66: Пример измерения шагового напряжения

Напряжение прикосновения

Измеряется напряжение между доступной заземленной металлической частью и находящейся на расстоянии 1 м от нее точки поверхности земли, см. рис.11.67. Напряжение между металлическим пластинами (S2053) измеряется вольтметром измерительного блока МІ 3295М, обладающим внутренним сопротивлением 1 кОм, которое имитирует сопротивление человеческого тела.

Рисунок 11.67: Пример измерения напряжения прикосновения

Источник тока для напряжения прикосновения и шагового напряжения

Рисунок 11.68: Блок-схема работы источника тока для измерения напряжения прикосновения и шагового напряжения

При проведении такого измерения через вспомогательный штырь (H) по заземлению пропускается синусоидальный ток Igen (55 Гц). Чтобы обеспечить большую силу тока, сопротивление вспомогательного штыря (H) должен быть как можно меньше. Сопротивление Rc можно снизить применением нескольких параллельных штырей. Большой ток повысит устойчивость к помехам. Падение напряжения измеряется измерительным блоком MI 3295M (высокочувствительный вольтметр 55 Гц). Поскольку тестовый ток во много раз меньше тока повреждения, то измеренное напряжение масштабируется согласно следующей формуле:

$$U_{s,t} = U_m (\text{MI 3295M}) \cdot \frac{I_{fault}}{I_{gen} (\text{MI 3290})}$$

где	
U _{s.t}	расчетное шаговое напряжение или напряжение прикосновения при
	токе повреждения,
U _m	тестовое падение напряжения, измеренное МI 3295М,
I _{fault}	заданное напряжение тока повреждения (максимальный ток в
	заземление в случае повреждения),
I _{gen}	тестовый (генерируемый) ток, протекающий от разъема Н (С1) к Е
(Č2).	

Испытание можно запустить со страницы измерения напряжения прикосновения и шагового напряжения «S&T Current Source».

Рисунок 11.69: Меню генерируемого тока для напряжения прикосновения и шагового напряжения

Рисунок 11.70: Пример отображения результата генерируемого тока для определения напряжения прикосновения и шагового напряжения

Порядок проведения измерения генерируемого тока для определения напряжения прикосновения и шагового напряжения

- □ Вызовите страницу источника тока «S&T Current Source».
- Соберите схему согласно рис. 11.66 или 11.67.
- Нажмите кнопку запуска измерения.
- □ Подождите, пока результаты измерений не отобразятся на экране.
- □ Для остановки измерения нажмите кнопку пуска снова.
- Сохраните результаты (при необходимости).

Примечания:

Перед запуском измерения принимайте во внимание предупреждающие сообщения!

МІ 3290 работает только как источник тока! для изменения напряжения Um и шагового напряжения, расчета напряжения прикосновения следует применять измерительный блок МІ 3295М.

11.7 Проверка провода заземления опоры

11.7.1 Проверка провода заземления опоры

Данное испытание проводится для проверки электрической целостности тросового молниеотвода.

Рисунок 11.71: Пример проверки провода заземления опоры

При проведении такого измерения через вспомогательный штырь (H) по заземлению пропускается синусоидальный ток I_{gen} . Чтобы обеспечить большую силу тока, сопротивление вспомогательного штыря (H) должно быть как можно меньше. Сопротивление R_c можно снизить применением нескольких параллельных штырей. Большой ток повысит устойчивость к помехам.

В этом примере ток *I_{g_w}* определяется по формуле:

$$I_{g_w}[mA] = I_{gen}[mA] - I_{f_{sum}}[mA]$$

$$I_{f_{sum}}[\mathrm{mA}] = I_{f1}[\mathrm{mA}] + I_{f2}[\mathrm{mA}]$$

где:

l _{a w}	ток тросового молниеотвода,
l _{den}	ток генератора (тестовый ток),
I _{f sun}	"общий ток, измеренный гибкими клещами.

Испытание можно запустить со страницы проверки провода заземления опоры «**Pylon Ground Wire Test**». Перед запуском измерения можно изменить следующие параметры: режим проверки, частота и количество витков клещей F1 – F4.

🗢 Pylon Ground	Wire Test	ζ ι	08:44
lf1 A		2/3	
If2 A			
If3A		f Hz	4
Test Mode Test Frequency	single 164 Hz		⇒
Number of turns F1 Number of turns F2	1		
Number of turns F3 Number of turns F4	1		444

Рисунок 11.72: Меню проверки провода заземления опоры

Параметры проверки провода заземления опоры

Режим проверки	Режим проверки: одиночный, развертка.
Частота измерения	Частота измерения: 55 Гц, 82 Гц, 164 Гц, 329 Гц, 659 Гц, 1,31 кГц, 1,50 кГц.
Количество витков	Количество витков гибких клещей, подключенных к разъему «F1» [1, 2, 3, 4, 5,
F1	6].
Количество витков	Количество витков гибких клещей, подключенных к разъему «F2» [1, 2, 3, 4, 5,
F2	6].
Количество витков	Количество витков гибких клещей, подключенных к разъему «F3» [1, 2, 3, 4, 5,
F3	6].
Количество витков	Количество витков гибких клещей, подключенных к разъему «F4» [1, 2, 3, 4, 5,
F4	6].

Порядок проведения проверки провода заземления опоры:

- Вызовите функцию проверки провода заземления опоры «Pylon Ground Wire Test function».
- □ Установите параметры измерения (режим, частоту, количество витков клещей 1 4).
- □ Соберите схему согласно рис. 11.71.
- □ Нажмите кнопку запуска измерения
- Подождите, пока результаты измерений не отобразятся на экране.
- Курсорными кнопками можно переключаться между графическим и цифровым отображением результатов.
- Сохраните результаты (при необходимости).

Рисунок 11.73: Пример отображения значения I_{g_w} –результата проверки провода заземления опоры

Рисунок 11.74: Пример отображения значения lf(1-4) –результата проверки провода заземления опоры

Примечания:

- □ Перед запуском измерения принимайте во внимание предупреждающие сообщения!
- □ На результат измерения могут повлиять интенсивные помехи. В таком случае на дисплее отображается предупреждающий значок «помеха».
- □ Штырь следует располагать на достаточном удалении от объекта измерений.
- При работе только с одними, двумя или тремя гибкими клещами одни из них обязательно следует подключать к разъему F1 (порт синхронизации).
- Для правильного измерения фазы следите, чтобы стрелка на корпусе клещей указывала в нужную сторону.
- Следите за правильностью указания в параметрах измерения количества витков клещей.

11.8 Измерение тока

Ток	Измерение	Режим измерения	Номинальная частота	Фильтр	Макс. диапазон измерения
lc, lf1, lf2, lf3, lf4	Железные клещи – измерение СКЗ	Непрерывный	45 Гц – 1,5 кГц	СКЗ	7,99 A
	Гибкие клещи — измерение СКЗ	Непрерывный	45 Гц — 1,5 кГц	СКЗ	49,9 А (1 виток)

Таблица 11.75: Измерения СКЗ тока, которые можно выполнить MI 3290

Железные клещи (СКЗ)

Эта функция предназначена для измерения переменных токов (утечки, нагрузки, помех) с помощью железных токоизмерительных клещей.

Рисунок 11.76: Измерение СКЗ силы тока железными клещами, пример

Гибкие клещи (СКЗ)

Эта функция предназначена для измерения переменных токов (утечки, нагрузки, наводок) с помощью гибких токоизмерительных клещей. Оденьте токоизмерительные клещи на обследуемый объект.

Рисунок 11.77: Измерение СКЗ силы тока гибкими клещами, пример

тока

11.8.1 Измерение среднеквадратического значения железными клещами

Измерение можно запустить со страницы «Iron Clamp Meter RMS» (железные клещи – измеритель СКЗ). Перед запуском измерения можно изменить следующие параметры: тип токоизмерительных клещей и предел (Measurement Clamp Type и Limit (R)).

Рисунок 11.78: Меню измерения СКЗ силы тока железными клещами

Параметры для измерения железными клещами – измерителем СКЗ:

Тип клещей	Тип токоизмерительных клещей: [А1018].
Предел (Ic)	Откл, 10 мА – 9,00 А

Порядок проведения измерения СКЗ силы тока железными клещами

- □ Вызовите функцию измерения СКЗ железными клещами «Iron Clamp Meter RMS».
- Э Установите параметры измерения (тип клещей и предел).
- □ Соедините клещи с измерителем и исследуемым объектом, см. рис. 11.76
- □ Нажмите кнопку запуска измерения
- Подождите, пока результаты измерений не отобразятся на экране.
- Нажмите кнопку остановки измерения.
- Сохраните результаты (при необходимости).

Рисунок 11.79: Пример результатов измерения СКЗ силы тока железными клещами

Примечание:

Перед запуском измерения принимайте во внимание предупреждающие сообщения!

11.8.2 Измерение среднеквадратического значения силы тока гибкими клещами

Измерение можно запустить со страницы гибких клещей «Flex Clamp Meter RMS». Перед проведением измерения можно изменить количество витков в клещах F1 - F4 (Number of turns F1 - F4).

Рисунок 11.80: Меню измерения СКЗ силы тока гибкими клещами

Параметры для измерения гибкими клещами:

Количество витков F1	Количество витков гибких клещей, подключенных к разъему «F1» [1, 2, 3, 4, 5, 6].
Количество витков F2	Количество витков гибких клещей, подключенных к разъему «F2» [1, 2, 3, 4, 5, 6].
Количество витков F3	Количество витков гибких клещей, подключенных к разъему «F3» [1, 2, 3, 4, 5, 6].
Количество витков F4	Количество витков гибких клещей, подключенных к разъему «F4» [1, 2, 3, 4, 5, 6].

Порядок проведения измерения гибкими клещами:

- □ Вызовите функцию измерения гибкими клещами «Flex Clamp Meter RMS».
- Установите количество витков клещей 1 4.
- □ Присоедините клещи к исследуемому объекту, см. рис. 11.77.
- □ Нажмите кнопку запуска измерения
- Подождите, пока результаты измерений не отобразятся на экране.
- Нажмите кнопку остановки измерения.
- Сохраните результаты (при необходимости).

Рисунок 11.81: Пример результатов измерения СКЗ силы тока гибкими клещами

Примечание:

- **Перед запуском измерения принимайте во внимание предупреждающие сообщения!**
- □ При работе только с одними, двумя или тремя гибкими клещами одни из них обязательно следует подключать к разъму F1 (порт синхронизации).
- Для правильного измерения фазы следите, чтобы стрелка на корпусе клещей указывала в нужную сторону.
- Следите за правильностью указания в параметрах измерения количества витков клещей.

11.9 Самодиагностика

С помощью функции самодиагностики «Checkbox» можно проверить работу самого измерителя сопротивления заземления и его принадлежностей, что особенно важно для железных и гибких клещей.

Самодиагностика	Измерение	Режим измерения	ΗЧ	ВЧ	Фильтр	Измерение Напряжение
Uh, Us, Ues, f, Igen, Ic, If1, If2, If3, If4	Проверка вольтметра	одиночное	55 Гц	15 кГц	БПΦ	20/40 B
	Проверка амперметра	одиночное	55 Гц	15 кГц	БПΦ	20/40 B
	Проверка железных,	одиночное	55 Гц	1,5 кГц	БПΦ	20/40 B
	гибких клещей					

Таблица 11.82: Доступные виды диагностики МІ 3290

Примечание:

Функцию самодиагностики «Checkbox» можно применять для проверки метрологических характеристик измерителя в процессе эксплуатации, периодическую поверку она не заменяет.

Рисунок 11.83: Измерения при самодиагностике, пример вольтметра

Рисунок 11.85: Измерения при самодиагностике, пример железных, гибких клещей

08.57

11.9.1 Проверка вольтметра

Измерение можно запустить со страницы проверки вольтметра «Check V-Meter». Перед проведением измерения можно изменить следующие параметры: тестовое напряжение (Test Voltage), и тестовая частота (Test Frequency). Разъемы H, S, ES и E должны быть свободны от подключений.

Рисунок 11.86: Блок-схема проверки вольтметра

Рисунок 11.87: Меню проверки вольтметра

Параметры проверки вольтметра: Тестовое Напряжение: 20 или 40 В

Uh 40.8 v		-
us 40.9 v		
ues 40.8 v	f 164 Hz	
Test Voltage	40 V	
Test Frequency	164 Hz	
1 1		

🗢 Check V - Meter

Рисунок 11.88: Пример результатов проверки вольтметра

напряжение	
Частота	Частота измерения: 55 Гц, 82 Гц, 164 Гц, 329 Гц, 659 Гц, 1,31 кГц, 1,50 кГц, 2,63 кГц,
измерения	3,29 кГц, 6,59 кГц, 13,1 кГц, 15,0 кГц.

Порядок проведения проверки вольтметра:

- Вызовите функцию проверки вольтметра «Check V-Meter».
- Установите тестовые параметры (напряжение и частоту).
- □ Отсоедините от разъемов H, S, ES и E все подключения и подсоедините эталонный вольтметр.
- Нажмите кнопку запуска измерения
- □ Подождите, пока результаты измерений не отобразятся на экране.
- Сравните результаты измерения.
- Сохраните результаты (при необходимости).

11.9.2 Проверка амперметра

GF <mark>GL</mark> GP

08:58

?

444

Измерение можно запустить со страницы проверки амперметра «**Check A-Meter**». Перед проведением проверки можно изменить следующие тестовые параметры: напряжение и частоту. Разъемы H и E следует соединить с эталонным амперметром.

Рисунок 11.89: Блок-схема процедуры проверки амперметра

🗂 Check A - Meter

laen

f 164 Hz

Test Voltage Test Frequenc

252 ma

40 \ 164 H

Рисунок 11.91: Пример результатов проверки амперметра

Рисунок 11.90: Меню проверки амперметра

Параметры проверки амперметра:

Тестовое Тестовое напряжение: 20 или 40 В

напряжение

Тестовая частота: 55 Гц, 82 Гц, 164 Гц, 329 Гц, 659 Гц, 1,31 кГц, 1,50 кГц, 2,63 кГц, 3,29 частота кГц, 6,59 кГц, 13,1 кГц, 15,0 кГц.

Порядок проведения проверки амперметра:

- Вызовите функцию проверки амперметра «Check A-Meter».
- □ Установите тестовые параметры (напряжение и частоту).
- Разъемы Н и Е соедините с эталонным амперметром, см. рис. 11.84.
 - Нажмите кнопку запуска измерения
 - Подождите, пока результаты измерений не отобразятся на экране.
 - Сравните результаты измерения.
 - Сохраните результаты (при необходимости).

11.9.3 Проверка железных, гибких клещей

Проверку можно запустить со страницы проверки железных и гибких клещей «**Check Iron, Flex Clamps**». Перед проведением проверки можно изменить следующие тестовые параметры: тип токоизмерительных клещей, напряжение, частота и количество витков клещей F1 – F4. Разъемы H и E следует замкнуть накоротко.

🗂 Che	ck Iroi	n, Flex	Clamps	13:56
lf1 230	6 mA 2 mA	Ic	237 mA	
lf3	_mA	lgen	240 mA	
lf4	_mA	f	660Hz	
Measuremo Test Voltag Test Frequ	ent Clam Je ency	р Гуре	40 V 659 Hz	?
Number of Number of Number of	turns F1 turns F2 turns F3	2	1	

Рисунок 11.92: Меню проверки железных, гибких клещей

Рисунок 11.93: Пример результатов железных, гибких клещей.

Параметры для проверки желе	езных,	гибких клещей.	
Тип ипошой	Тип		ипририй

Тип клещей	Тип токоизмерительных клещей — установите железные клещи; [А1018].		
Тестовое напряжение	Тестовое напряжение: 20 или 40 В		
Тестовая частота	Тестовая частота: 55 Гц, 82 Гц, 164 Гц, 329 Гц, 659 Гц, 1,31 кГц, 1,50 кГц.		
Количество витков F1	Количество витков гибких клещей, подключенных к разъему «F1» [1, 2, 3, 4, 5, 6].		
Количество витков F2	Количество витков гибких клещей, подключенных к разъему «F2» [1, 2, 3, 4, 5, 6].		
Количество витков F3	Количество витков гибких клещей, подключенных к разъему «F3» [1, 2, 3, 4, 5, 6].		
Количество витков F4	Количество витков гибких клещей, подключенных к разъему «F4» [1, 2, 3, 4, 5, 6].		

Порядок проведения проверки железных, гибких клещей:

- □ Вызовите функцию проверки железных, гибких клещей «Check Iron, Flex Clamps».
- Установите тестовые параметры (тип клещей, напряжение, частоту, количество витков клещей 1 4).
- Замкните накоротко разъемы Н и Е
- Подключите к измерителю железные/ гибкие клещи и оденьте на провод, которым закорочены разъемы Н и Е.
- Нажмите кнопку запуска измерения
- Подождите, пока результаты измерений не отобразятся на экране.
- Сравните результаты измерения. (Сравните их с отображенным значением тестового тока *lgen*).
- Сохраните результаты (при необходимости).

Примечание:

- □ Перед запуском измерения принимайте во внимание предупреждающие сообщения!
- □ При работе только с одними, двумя или тремя гибкими клещами одни из них обязательно следует подключать к разъему F1 (порт синхронизации).
- Для правильного измерения фазы следите, чтобы стрелка на корпусе клещей указывала в нужную сторону.
- □ Следите за правильностью указания в параметрах измерения количества витков клещей.

12 Автоматические измерения

В меню автоматических измерений доступны предварительно запрограммированные последовательности. Кроме этого, пользователь может создать свои последовательности измерений. Результаты автоматических измерений сохраняются в памяти вместе со всей соответствующей информацией. Программу автоматических измерений можно предварительно составить на ПК с помощью ПО Metrel ES Manager и затем загрузить в измеритель. Параметры и пределы отдельных одиночных измерений можно затем изменить в измерителе.

12.1 Выбор автоматических измерений

Сначала в меню групп автоматических измерений **Auto test groups** следует выбрать список автоматических измерений. Дополнительные сведения изложены в главе 8.8. Затем из основного меню автоматических измерений **Auto tests** можно выбрать нужные для выполнения. Это меню можно организовать в структурированном виде с папками, вложенными папками и автоматическими измерениями.

Рисунок 12.1: Главное меню автоматических измерений

Варианты выбора

Вызов меню для просмотра настроек выбранного автоматического измерения. Это также следует сделать, если нужно изменить параметры/ пределы выбранного автоматического измерения. Дополнительные сведения изложены в разделе 12.2.1.

Запуск выбранного автоматического измерения. Измеритель немедленно запустит выполнение автоматического измерения.

12.2 Организация автоматических измерений

Автоматическое измерение делится на три фазы:

- Перед запуском первого измерения на экране появится меню автоматического измерения (если измерение не было запущено непосредственно из главного меню автоматических измерений). В этом меню можно задать параметры и пределы отдельных измерений.
- В ходе фазы выполнения автоматического измерения выполняются заданные одиночные измерения. Порядок их выполнения определяется запрограммированной последовательностью команд.
- По завершению выполнения последовательности измерений на экране появляется меню результатов автоматического измерения. Можно просмотреть настройки отдельных измерений и сохранить их результаты в организаторе памяти.

12.2.1 Меню просмотра автоматических измерений

В меню просмотра автоматических измерений отображаются заголовок и одиночные измерения выбранного автоматического измерения. В заголовке содержится наименование и описание автоматического измерения. Перед запуском автоматического измерения можно изменить параметры/ пределы отдельных измерений.

Меню просмотра автоматического измерения (выбран заголовок)

Рисунок 12.2: Меню просмотра автоматического измерения – выбран заголовок

Запуск автоматического измерения.

Меню просмотра автоматического измерения (выбраны измерения)

Варианты выбора

Индикация циклов

Присоединённое к концу наименования одиночного измерения обозначение «**x2**» указывает, что запрограммировано циклическое повторение одиночного измерения. Т. е. это измерение будет повторено столько раз, сколько указано за символом «x». В конце каждого отдельного измерения можно выйти из цикла досрочно.

12.2.2 Пошаговое выполнение автоматических измерений

Порядок выполнения автоматических измерений определяется командами программы. Кроме измерений последовательность содержит:

- паузы в ходе выполнения последовательности измерений;
- сигнализации
- продолжение выполнения последовательности измерений с учётом результатов измерений;

Рисунок 12.4: Автоматическое измерение – пример паузы с выдачей сообщения (текстового или графического)

+ HF-Earth Resistance (25kHz)	
Re 10.0 a	Þ
le 20.2 mA Rc 2.01 kΩ f 25.0 kHz Rp 2.01 kΩ	୯ ଙ୍
Limit/Ro) 20.0	
	444

Рисунок 12.5: Автоматическое измерение – пример завершённого измерения с вариантами продолжения.

Варианты выбора (в ходе выполнения автоматического измерения)

	Переход к следующему этапу последовательности измерения.
C	Повторение измерения. Показанные результаты одиночного измерения не сохраняются.
	Завершение автоматического измерения и переход в окно результатов автоматического измерения.
Ś	Выход из цикла выполнения одиночного измерения и переход к следующему шагу последовательности.

Предлагаемые в панели управления варианты выбора зависят от выбранного одиночного измерения, его результатов и запрограммированной последовательности измерения.

12.2.3 Окно результатов автоматического измерения

По завершению выполнения последовательности измерений на экране появляется окно результатов автоматического измерения. С левой стороны экрана отображаются одиночные измерения и их состояния. В средине экрана отображается заголовок автоматического измерения. Вверху отображается общее состояние автоматического измерения. Дополнительные сведения изложены в разделе 9.1.1.

Рисунок 12.6: Окно результатов автоматического измерения Варианты выбора Запуск измерения Запуск нового автоматического измерения. Просмотр результатов отдельных измерений. Измеритель переключается в меню для просмотра настроек автоматического измерения. Сохранение результатов автоматического измерения. Новое автоматическое измерение было выбрано и запущено из структурного объекта иерархической структуры: □ Автоматическое измерение будет сохранено под выбранным объектом структуры. Новое автоматическое измерение было запущено из главного меню автоматического измерения: • По умолчанию будет предложено сохранение под последним выбранным объектом структуры. Пользователь может выбрать иной B объект структуры или создать новый. По нажатию кнопки в меню организатора памяти автоматическое измерение сохраняется под выбранным местом. В иерархической структуре было выбрано и запущено пустое измерение: Результат (-ы) будет добавлен (-ы) в автоматическое измерение. Состояние автоматического измерения сменится с «пустое» на «завершённое». В иерархической структуре было выбрано, просмотрено и затем перезапущено уже выполненное автоматическое измерение: □ Новое автоматическое измерение будет сохранено под выбранным объектом структуры.

Варианты выбора меню для просмотра настроек результатов автоматического измерения

Отображение настроек выбранного измерения в автоматическом измерении.

Вызов меню для просмотра значений параметров и пределов выбранных измерений. Дополнительные сведения изложены в разделе 10.1.2.

Рисунок 12.7: Настройки меню для просмотра настроек результатов автоматического измерения.

Рисунок 12.8: Меню настроек одиночного измерения в автоматическом измерении.
12.2.4 Окно памяти автоматического измерения

В окне памяти автоматического измерения можно просмотреть настройки и запустить на выполнение новое автоматическое измерение.

Рисунок 12.9: Окно памяти автоматического измерения

Варианты выбора

Перезапуск автоматического измерения. Вызов меню для нового автоматического измерения.

Вызов меню для просмотра настроек автоматического измерения.

13 Связь

Измеритель может связываться с запущенной на ПК программой Metrel ES Manager. Возможны следующие операции:

- Э загрузка и сохранение в ПК сохраненных результатов и иерархической структуры,
- □ выгрузка в измеритель из ПК иерархической структуры и автоматических измерений.

Программа ES Manager может работать на ПК с OC Windows 7, Windows 8, Windows 8.1 и Windows 10. Существуют два интерфейса связи, поддерживаемые данным измерителем: USB и Bluetooth.

Как установить связь по USB:

- USB кабелем соедините соответствующие разъемы ПК и измерителя.
- □ Включите ПК и измеритель.
- □ Запустите в ПК программу Metrel ES Manager.
- □ Задайте нужный порт связи. (Порт СОМ определяется как «последовательный порт USB».)
- □ Если порт не определился, то следует установить подходящий USB драйвер (см. прим.).
- Измеритель готов к обмену данными с ПК по USB связи.

Обмен данными по Bluetooth

Встроенный модуль Bluetooth позволяет осуществлять обмен данными через Bluetooth с ПК и Androidустройствами.

Как осуществить настройку канала связи Bluetooth между измерителем и ПК:

- Включите измеритель.
- На ПК сконфигурируйте стандартный последовательный порт, чтобы Вluetooth между измерителем и ПК. Обычно для установления связи между устройствами код не требуется.
- Запустите ПО Metrel ES Manager.
- Задайте сконфигурированный порт связи.
- Измеритель готов к обмену данными с ПК по Bluetooth связи.

Примечания:

- USB драйверы должны быть установлены на ПК перед использованием интерфейса USB. Указания по установке USB драйверов находятся на установочном компакт-диске, а также их можно с интернет-сайта <u>http://www.ftdichip.com</u> (в измерителе MI 3290 используется контроллер FT230X).
- □ Название правильно сконфигурированного устройства Bluetooth должно содержать тип измерителя и его серийный номер, например, MI 3290-12345678I.
- □ Код для связи с Bluetooth устройством NNNN.

14 Техническое обслуживание

Разбирать корпус измерителя сопротивления заземления МІ 3290 разрешается только работникам с соответствующим допуском. Внутри измерителя нет никаких компонентов, которые может заменять пользователь. Пользователю разрешена только замена батарей.

14.1 Чистка

Корпус не требует специального обслуживания. Для очистки поверхности измерителя используйте мягкую ткань, слегка увлажненную мыльной водой или спиртом. Затем оставьте измеритель до полного высыхания перед использованием.

Предупреждение:

- Не используйте жидкостей на основе бензина или углеводородных соединений!
- Не проливайте чистящую жидкость на измеритель!

14.2 Периодическая поверка

В процессе эксплуатации измеритель должен проходить периодическую поверку, межповерочный интервал указан в свидетельстве об утверждении типа средств измерений.

14.3 Сервисное обслуживание

Для проведения гарантийного или другого ремонта свяжитесь с Вашим поставщиком.

14.4 Обновление измерителя

Внутреннее ПО измерителя может быть обновлено с ПК через порт USB. Для обновления внутреннего ПО измерителя («прошивки») требуется доступ в интернет, эта операция выполняется из ПО Metrel ES Manager по указаниям мастера обновления – специальной программы FlashMe. Дополнительные сведения находятся в справочном файле ПО Metrel ES Manager.

Примечание:

□ Подробные сведения по установке USB драйвера изложены в главе 13.

15 Технические характеристики

15.1 Измерение полного сопротивления (импеданса) заземления

15.1.1 2, 3, 4-проводный метод

_	
	11/2
принцип измерения принцип измерение напряжения/ п	ла

Полное сопротивление заземления	Тестовая частота	Диапазон измерения	Разрешение	Предел допускаемой погрешности измерения*
		От 0,00 до 19,99 Ом	0,01 Ом	
		От 20,0 до 199,9 Ом	0,1 Ом	
Ze	От 55 до 329 Гц	От 200 до 999 Ом	1 Ом	(3×0) $(3 \times$
		От 1,000 до 1,999 кОм	0,001кОм	значения + 5 е. м. р. ј
		От 2,00 до 19,99 кОм	0,01 кОм	
	От 659 Гц до 2,63 кГц	От 0,00 до 19,99 Ом	0,01 Ом	
		От 20,0 до 199,9 Ом	0,1 Ом	±(5 % от измеренного
		От 200 до 999 Ом	1 Ом	значения + 3 е. м. р.**)
		От 1,000 до 1,999 кОм	0,001 кОм	
	От 3,29 до 15,0 кГц	0,00 Ом 19,99 Ом	0,01 Ом	±(8 % от измеренного
		20,0 Ом 199,9 Ом	0,1 Ом	значения + 3 е. м. р.**)

 Величина погрешности зависит от правильной компенсации сопротивления соединительных проводов для 2, 3 -проводного метода и сопротивления зондов и вспомогательных электродов заземления (см. раздел 15.8 «Влияние вспомогательных электродов»).

 При измерении на высоких частотах > 659 Гц следует уделять особое внимание размещению проводов, паразитным эффектам и т. п. Используйте защитный разъем.

**е. м. р. – единица младшего разряда

Режим измерения	одиночный или развертка
Тестовое напряжение холостого хода	20 или 40 В переменного тока
Тестовая частота	.55 Гц, 82 Гц, 164 Гц, 329 Гц, 659 Гц, 1,31 кГц, 1,50 кГц, 2,63 кГц, 3,29 кГц, 6,59 кГц, 13,1 кГц, 15,0 кГц
Ток короткого замыкания	.> 220 мА при 164 Гц, ~40 В
Форма тестового напряжения	. синусоидальная
Определение Ze	полное сопротивление (импеданс) Z(f)
Определение Re	. активное сопротивление R
Время измерения Автоматическая проверка сопротивления штырей	см. таблицу 15.2 да (3, 4-проводный методы)
Автоматическая проверка соединения Автоматический выбор диапазона Автоматическое измерение уровня помех	да [H, S, ES, E] да да

15.1.2 Измерение полного сопротивления (импеданса) заземления с помощью железных клещей (селективное измерение)

Принцип измерения: Измерение напряжения/ тока (внешние железные клещи)

Полное сопротивление заземления (селективное измерение)	Тестовая частота	Диапазон измерения	Разрешение	Предел допускаемой погрешности измерения
Zsel	От 55 до 329 Гц	От 0,00 до 19,99 Ом От 20,0 до 199,9 Ом От 200 до 999 Ом От 1,000 до 1,999 кОм От 2,00 до 19,99 кОм	0,01 OM 0,1 OM 1 OM 0,001 KOM 0,01 KOM	±(8 % от измеренного
	От 659 Гц до 1,50 кГц	От 0,00 до 19,99 Ом От 20,0 до 199,9 Ом От 200 до 999 Ом От 1,000 до 1,999 кОм	0,01 OM 0,1 OM 1 OM 0.001 KOM	ынанстий + 5 с. м. р. ј

*е. м. р. – единица младшего разряда

Режим измерения	одиночный или развертка
Тестовое напряжение холостого хода	40 B
Тестовая частота	.55 Гц, 82 Гц, 164 Гц, 329 Гц, 659 Гц, 1,31 кГц, 1,50 кГц,
Ток короткого замыкания	.> 220 мА при 164 Гц, ~40 В
Форма тестового напряжения	синусоидальная
Определение Zsel	полное сопротивление (импеданс) Z(f)
Время измерения	см. табл. 15.2
Тип токоизмерительных клещей	A1018
Автоматическое измерение сопротивления штыря	да
Автоматическая проверка соединения	да [Н, S, ES, E]
Автоматический выбор диапазона	да
Автоматическое измерение уровня помех	да
Индикация малого тока в клещах	да [I кл.]

15.1.3 Измерение полного сопротивления (импеданса) заземления с помощью двух клещей

Принцип измерения: Измерение сопротивления замкнутых контуров двумя железными токоизмерительными клешами

	10	коизмерительными клеща	10(0)
Полное	Диапазон измерения	Разрешение	Предел допускаемой погрешности
сопротивление			измерения
заземления (2-			
клещевой метод)			
	От 0,00 до 9,99 Ом	0,01 Ом	±(5 % от измеренного значения + 2 е.
			м. р.*)
Ze	От 10,0 до 49,9 Ом	0,1 Ом	±(10 % от измеренного значения + 2
			е. м. р.*)
	От 50 до 100 Ом	1 Ом	±(20 % от измеренного значения)

*е. м. р. – единица младшего разряда

Режим измерения	непрерывный
Расстояние между клещами	> 30 см (мин.)
Тестовая частота	82 Гц, 164 Гц, 329 Гц
Форма тестового напряжения	синусоидальная
Определение Ze	полное сопротивление заземления (импеданс) Z(f)
Частота обновления показаний	тип. З с на частоте 164 Гц (в зависимости от тестовой частоты)
Тип токоизмерительных клещей	A1018
Тип генерирующих клещей	A1019
Автоматический выбор диапазона	да
Автоматическое измерение уровня помех	да
Индикация малого тока в клещах	да [І кл.]

Типовой тестовый ток	Импеданс контура					
Тестовая частота	10 мОм	100 мОм	500 мОм	1 Ом	5 Ом	10 Ом
164 Гц	6,8 A	0,36 A	80 mA	40 мА	8 мА	4 мА

Таблица 15.1: Типовой тестовый ток для различных импедансов контура

15.1.4 Измерение полного сопротивления заземления (импеданса) пассивным методом (гибкие клещи)

Принцип измерения: Измерение напряжения/ тока (внешние гибкие клещи)

Полное заземления метод)	сопротивление (пассивный	Диапазон измерения	Разрешение	Предел допускаемой погрешности измерения	
		От 0,00 до 19,99 Ом	0,01 Ом		
Ztot		От 20,0 до 199,9 Ом	0,1 Ом		
		От 200 до 999 Ом	1 Ом	\pm (8 % от измеренного значения +	
		От 1 000 до 1 999 Ом	0,001 кОм	зе. м. р. ')	
		От 2,00 до 19,99 кОм	0,01 кОм		

*е. м. р. – единица младшего разряда

Режим измерения	непрерывный
Номинальная частота	от 45 до 150 Гц
Определение Ztot	полное сопротивление (импеданс) Z(f)
Частота обновления показаний	тип. 6 с
Входное сопротивление (S)	1,2 МОм
Автоматическая проверка соединения	да [S]
Автоматический выбор диапазона	да
Автоматическое измерение уровня помех	да
Индикация слабого тока клещей	да [If1, If2, If3, If4]
Автоматическое опознавание клещей	да [F1, F2, F3, F4]

15.1.5 Измерение активного сопротивления заземления ВЧ-методом (25 кГц)

Принцип измерения Измерение напряжения/ тока

Сопротивление	Диапазон измерения	Разрешение	Предел допускаемой погрешности
заземления			измерения
Po	От 0,0 до 19,9 Ом	0,1 Ом	±(3 % от измеренного значения + 2 е.
ne	От 20 до 299 Ом	1 Ом	м. р.*)

*е. м. р. – единица младшего разряда

Режим измерения	одиночный
Тестовое напряжение холостого хода	40 В переменного тока
Частота тестового напряжения	25 кГц
Ток короткого замыкания	> 40 мА
Форма тестового напряжения	синусоидальная
Определение Re	активное сопротивление
Время измерения	тип. 10 с
Автом. измерение сопротивления штырей	да
Автоматическая проверка соединения	да [H, S, E]
Автоматический выбор диапазона	да
Автоматическое измерение уровня помех	да
Автоматическая компенсация индуктивного ком	понента да
Разъем Guard	да

15.1.6 Измерение полного сопротивления (импеданса) заземления с помощью гибких клещей (селективное измерение)

Принцип измерения: Измерение напряжения/ тока (внешние гибкие клещи)

Полное	Тестовая частота	Диапазон измерения	Разрешение	Предел допускаемой	
сопротивление				погрешности измерений	
заземления					
(селективное					
измерение					
гибкими					
клещами от 1					
до 4 шт.)					
	От 55 до 329 Гц	От 0,00 до 19,99 Ом	0,01 Ом		
		От 20,0 до 199,9 Ом	0,1 Ом		
		От 200 до 999 Ом	1 Ом	±(8 % от измеренного	
		От 1,000 до 1,999 кОм	0,001 кОм		
Ztot		От 2,00 до 19,99 кОм	0,01 кОм		
		От 0,00 до 19,99 Ом	0,01 Ом	значения + 5 е. м. р.)	
		От 20,0 до 199,9 Ом	0,1 Ом		
	От 659 I ц до 1,50 кI ц	От 200 до 999 Ом	1 Ом		
		От 1,000 до 1,999 кОм	0,001 кОм		

*е. м. р. – единица младшего разряда

Типовое врем измерения	я Измерение				
Тестовая частота	2- проводное	3- проводное	4- проводное	Селективное измерение (железные клещи)	Селективное измерение (гибкие клещи)
55 Гц	17 c	32 c	45 c	57 с	1 мин 13 с
329 Гц	8 c	11 c	15 c	19 с	23 c
1,50 кГц	6 c	10 c	12 c	15 с	18 c
6,59 кГц	6 c	9 c	12 c	/	/
15,0 кГц	6 c	9 c	11 c	/	/
развертка	56 c	1 мин. 45 с	2 мин. 34 с	2 мин. 34 с	3 мин 14 с (1 х гибкие клещи)

Таблица 15.2: Типовые продолжительности выполнения различных видов измерений

15.2 Измерения удельного сопротивления грунта

15.2.1 Метод Веннера и Шлумбергера

Принцип измеренияизмерение напряжения/ тока

Удельное	Диапазон измерения	Разрешение	Погрешность
сопротивление			
	От 0,00 до 19,99 Ом∙м	0,01 Ом•м	
	От 20,0 до 199,9 Ом∙м	0,1 Ом•м	расчетное значение (учтите
ρ	От 200 до 999 Ом∙м	1 Ом•м	погрешность 4-проводного
	От 1,000 до 1,999 кОм∙м	0,001 кОм•м	метода измерения)
	От 2,00 до 19,99 кОм∙м	0,01 кОм•м	

Режим измерения.....одиночный

Тестовое напряжение холостого хода...... 20 или 40 В переменного тока

Тестовая частота...... 164 Гц

Ток короткого замыкания > 220 мА при 164 Гц, 40 В переменного тока

Форма тестового напряжения синусоидальная

Время измерения см. табл. 15.2

Автом. измерение сопротивления зонда да

Автоматическая проверка соединения да [H, S, ES, E]

Автоматический выбор диапазона да

Автоматическое измерение уровня помех да

15.3 Потенциал грунта

15.3.1 Отношение потенциалов

Принцип измерения:Измерение напряжения

Отношение	Диапазон измерения	Разрешение	Предел допускаемой погрешности
потенциалов			измерения*
Vp	0,001 1,000	0 001	±(2 % от измеренного значения + 2 е.
			м. р.**)

* погрешность измерения зависит от минимального сопротивления штыря Rc >300 Ом

**е. м. р. – единица младшего разряда

Режим измерения	
Тестовое напряжение холостого хода 40 В переменного тока	
Тестовая частота 329 Гц	
Тестовый ток короткого замыкания> 220 мА при 164 Гц	
Форма тестового напряжения синусоидальная	
Определение Vp в п. 11.6.1	
Входное сопротивление (S) 1,2 МОм	
Время измерениятип. 10 с на частоте 164 Гц (в зависи	мости от тестовой частоты)
Автоматическая проверка соединенияда [H, S, E]	
Автоматический выбор диапазонада	
Автоматическое измерение уровня помех да	

15.3.2 Измерение генерируемого тока, напряжения, расчет напряжения прикосновения и шагового напряжения

Принцип измерения измерение тока (МІ 3290) / измерение напряжения (МІ 3295М) **МІ 3290 (источник тока)**

Ток	Диапазон измерения	Разрешение	Предел допускаемой погрешности
			измерения
Igon	От 0,0 до 99,9 мА	0,1 мА	±(2 % от измеренного значения + 2 е.
igen	От 100 до 999 мА	1 мА	м. р.*)

*е. м. р. – единица младшего разряда

Режим измерения..... непрерывный

Тестовое напряжение холостого хода...... 40 В переменного тока

Частота тестового тока...... 55 Гц, 82 Гц, 164 Гц, 329 Гц

Мин. тестовый ток.....> 40 мА

Выходной импеданс генератора 100 Ом

Форма тестового напряжения синусоидальная

Автоматическая проверка соединения да [H, E]

MI 3295M (измерительный блок)

Напряжение	Диапазон измерения	Разрешение	Предел допускаемой погрешности измерения	
	От 0,01 до 19,99 мВ	0,01 мВ		
	От 20,0 до 199,9 мВ	0.1 мА		
Um	От 200 до 1999 мВ	1 мВ	±(2 % от измеренного значения + 2	
	От 2,00 до 19,99 В	0,01 B	м. р.)	
	От 20.0 до 59.9 В	0.1 MA		

Режим измерения.....одиночный

Входное сопротивление (переключаемое)1 кОм, 1 МОм

Диапазон тока повреждения (переключаемый).....от 10 А до 200 кА

Подавление помех ЦСП фильтрация 55 Гц, 64 дБ подавление помехи 50 (60) Гц

Напряжение прикосновения/шага	Диапазон измерения	Разрешение	Погрешность	
Us, Ut	От 0,0 до 199,9 В	0,1 B	Вычисленное значение	
	От 200 до 999 В	1 B		

Напряжение прикосновения или шаговое напряжение вычисляется по формуле: Us, Ut = Um(Ifault / Igen)

15.4 Измерение полного сопротивления (импеданса) заземления импульсным методом

15.4.1 Импульсное измерение

Принцип измерения: пока (пикового)/ тока (пикового)/ тока (пикового)

Полное сопротивление заземления (импульсный метод)	Диапазон измерения	Разрешение	Предел допускаемой погрешности измерения
7.0	От 0,0 до 19,9 Ом	0,1 Ом	±(8 % от измеренного значения + 8 е.
zρ	От 20 до 199 Ом	1 Ом	м. р.)

* е. м. р. – единица младшего разряда

Режим измерения..... одиночный

Напряжение холостого хода 120 В переменного тока (пик. зн.)

Тестовый ток короткого замыкания 6 А переменный ток (пик. зн.)

Форма импульса...... 10 / 350 мкс

Определение Zp отношение пикового напряжения к пиковому току.

Время измерения тип. 20 с

Автоматическая проверка соединения да [H, S, E]

Автоматическое измерение сопротивления штыря да (на 3,29 кГц)

Автоматическое измерение уровня помех да

Разъем Guard (экран) да

Влияние сопротивления вспомогательных штырей

Споротивление токового штыря и потенциального штыря измеряется 3-проводным методом на частоте 3,29 кГц тестовым напряжением холостого хода ~40 В.

Rc и Rp макс. ...(100 Oм + (40 * Ra)) или 1 кOм (выбирается меньшее значение), где Ra сопротивление заземления В результаты измерения вносится дополнительная погрешность ±(20 % от измеренного значения), если сопротивления штырей Rc и Rp больше максимальных значений Rc макс или Rp макс.

Влияние помех

Макс. напряжение помехи на выводах Н, S и E1 В скз

Рисунок 15.1: Упрощенная схема импульсного генератора в МІ 3290, где

-		
л.	источник высокого	напряжения
-		nanpintentin

R1 резистор цепи заряда

с	накопительный конденсатор
R2, R4	резисторы формирования длительности импульса
22	

R3 резистор согласования импеданса

L..... катушка формирования времени нарастания импульса

15.5 Измерение сопротивления проводников постоянным током

15.5.1 Измерение током 200 мА

Принцип измерения: принцип измерение напряжения (постоянного)/ тока (постоянного)

Сопротивление	Диапазон измерения	Разрешение	Предел допускаемой погрешности измерения*	
	От 0,00 до 19,99 Ом	0,01 Ом		
D	От 20,0 до 199,9 Ом	0,1 Ом	±(2 % от измеренного значения + 2	
n	От 200 до 999 Ом	1 Ом	м. р.**)	
	От 1,00 до 1,99 кОм	10 Ом		

*погрешность измерения зависит от корректности компенсации измерительных проводов

** е. м. р. – единица младшего разряда

Режим измерения одиночный

Напряжение холостого хода 20 В постоянного тока

Ток короткого замыкания мин. 200 мА постоянный ток на нагрузке 2 Ом

Направление тестового тока...... двунаправленное

Максимальная индуктивность 2 Гн

Время измерения тип. 5 с

Метод измерения 2-проводный

Компенсация соединительного провода да, до 5 Ом

Автоматическое измерение уровня помех да

15.5.2 Измерение током 7 мА

Принцип измерения: постоянного)/ тока (постоянного)/ тока (постоянного)

Сопротивление	Диапазон измерения	Разрешение	Предел допускаемой погрешности измерения *	
R	От 0,0 до 199,9 Ом	0,1 Ом		
	От 200 до 999 Ом	1 Ом	±(3 % от измеренного значения + 2 е.	
	От 1,00 до 9,99 кОм	0,01 кОм	м. р.)	
	От 10,0 до 19,9 кОм	0,1 кОм		

* погрешность измерения зависит от корректности компенсации измерительных проводов

** е. м. р. – единица младшего разряда

Режим измерениянепрерывный

Напряжение холостого хода около 20 В постоянного тока

Тестовый ток короткого замыкания около 7,2 мА постоянный ток

Направление тестового тока...... двунаправленное

Частота обновления показанийтип. 2 с

Метод измерения 2-проводный

Компенсация соединительного провода да, до 5 Ом

Автоматический выбор диапазона да

Автоматическое измерение уровня помех да

15.6 Измерение полного сопротивления (импеданса) переменным током

Измеритель импеданса 15.6.1

Принцип измерения: Измерение напряжения (переменного)/ тока (переменного)

Полное сопротивление (Тестовая частота	Диапазон измерения	Разрешение	Предел допускаемой погрешности измрений	
z От 55 Гц до 15,0 кГц		От 0,00 до 19,99 Ом	0,01 Ом		
	От 55 Гц до 15,0 (кГц (От 20,0 до 199,9 Ом	0,1 Ом	±(3 % от измеренного значения	
		От 200 до 999 Ом	1 Ом		
		От 1,000 до 1,999 кОм	0,001 кОм	+ 2 e. m. p. ')	
		От 2,00 до 19,99 кОм	0,01 кОм		

*е. м. р единица младшего разряда	
Режим измерения	одиночный или развертка
Тестовое напряжение холостого хода	20 или 40 В переменного тока
Частота тестового напряжения	55 Гц, 82 Гц, 164 Гц, 329 Гц, 659 Гц, 1,31 кГц, 1,50 кГц, 2,63 кГц, 3,29 кГц, 6,59 кГц, 13,1 кГц, 15,0 кГц
Ток короткого замыкания	> 220 мА при 164 Гц, ~40 В
Форма тестового напряжения	синусоидальная
Время измерения	тип. 10 с на частоте 164 Гц (в зависимости от тестовой частоты)
Метод измерения	4-проводный
Rc1 + Rc2.	5 Ом макс.
Rp1 + Rp2	5 Ом мак.
Автоматическая проверка соединения	да [С1, Р1, Р2, С2]
Автоматический выбор диапазона	да
Автоматическое измерение уровня помех	да

15.7 Измерение силы тока

15.7.1 Железные клещи

Принцип измерения: Измерения тока (СКЗ)

Сила тока (СКЗ)	Диапазон измерения	Разрешение	Предел допускаемой погрешности измерения*
	От 1,0 до 99,9 мА	0.1 мА	
1	От 100 до 999 мА	1 мА	$\pm (2\% \text{ от измеренного значения + 3 e.})$
	От 1,00 до 7,99 А	0,01 A	м. р.)

*При наличии внешнего магнитного поля величиной 30 А/м в результаты измерений вносится дополнительная погрешность ±15 % от измеренного значения, располагайте клещи как можно дальше от прочих токонесущих проводников.

**е. м. р. – единица младшего разряда

Режим измерения непрерывный Входной импеданс 10 Ом (1/4 Вт макс.) Номинальная частота от 45 Гц до 1,5 кГц Частота обновления показанийтип. 1 с Тип токоизмерительных клещей А1018 Автоматический выбор диапазона да

15.7.2 Гибкие клещи

Сила тока (СКЗ)	Диапазон измерения	Разрешение	Предел допускаемой погрешности измерения*			
lf1, lf2, lf3, lf4	От 10 до 99,9 мА	0.1 мА				
	От 100 до 999 мА	1 MA	±(8 % от измеренного значения + 3			
	От 1,00 до 9,99 А	0,01 A	м. р.**)			
	От 10,0 до 49,9 А	0,1 мА				

Принцип измерения: Измерения тока (СКЗ)

* Диапазоны измерения и погрешность измерения приведены для использования одного витка, кроме диапазона измерений 10 ... 99,9 мА, где должно быть хотя бы 3 витка.

Измерения следует проводить, по возможности, подальше от прочих токонесущих проводников. Внешнее магнитное поле величиной 5 А/м может внести дополнительную погрешность в результат измерения ±15% от измеренного значения.

Очень важно расположить проводник в центре окружности, образованной клещами, перпендикулярно измерительной головке.

Полный диапазон шкалы тока гибких клещей (If1, If2, If3, If4) зависит от количества витков (1, 2, 3, 4, 5, 6) и определяется по следующей формуле:

$$If_{FS} = \frac{49,9[A]}{\text{количество витков}}$$

**е. м. р. – единица младшего разряда

Режим измерения не	прерывный
Входной импеданс (F1 –F4) 10	кОм
Номинальная частота от	45 Гц до 1,5 кГц
Частота обновления показаний ти	п. 2 с
Тип токоизмерительных клещейА1	487
Автоматический выбор диапазонада	
Автоматическое опознавание клещей да	[F1, F2, F3, F4]

15.8 Влияние сопротивления вспомогательных штырей

Определение Rc, Rp и Ra:

- Rcимпеданс вспомогательных токовых штырей (Rh и/или Re),
- Rpимпеданс вспомогательных потенциальных штырей (Rs и/или Res),
- Raсопротивление заземления.

Дополнительная погрешность, вносимая в результат, при выходе Rh, Rs, Res, Re за предельное или макс. значение

Тестовая частота	Предел для Rh и Rs	Предел для Res и Re	Макс.	Дополнительная
			значение	погрешность
55 164 Гц	> 100 Ом + (2 к * Ra)	> 100 Ом + (1 к * Ra)	50 кОм	±(15 % от изм. зн.)
329 659 Гц	> 100 Ом + (1 к * Ra)	> 100 Om + (500 * Ra)	25 кОм	±(15 % от изм. зн.)
1,31 2,63 кГц	> 100 Ом + (500 * Ra)	> 50 Ом + (250 * Ra)	12,5 кОм	±(15 % от изм. зн.)
3,29 6,59 кГц	> 100 Om + (250 * Ra)	> 50 Ом + (125 * Ra)	6,25 кОм	±(15 % от изм. зн.)
13,1 15,0 кГц	> 50 Ом + (150 * Ra)	> 50 Om + (50 * Ra)	3,1 кОм	±(15 % от изм. зн.)
25,0 кГц	> 250 Ом + (500 * Ra)	/	2 кОм	±(15 % от изм. зн.)

Если сопротивление вспомогательных штырей превышает предел на дополнительные 50%, то это означает превышение диапазона измерения.

Выход за предел диапазона измерений. Измерение невозможно запустить или отобразить!

Значок высокого импеданса вспомогательного токового или потенциального штыря.

Rc Rp	Высокий импеданс вспомогательного токового или потенциального штыря.
Rc	Высокий импеданс вспомогательного токового штыря Rc.
Rpl	Высокий импеданс вспомогательного потенциального штыря Rp.

15.9 Влияние слабого тестового тока при измерении с помощью клещей

В больших системах токовыми клещами измеряется только небольшая часть от общего тестового тока. Необходимо учитывать погрешность измерений малых токов и устойчивость к воздействию помех! В такой ситуации на экране измерителя появляется предупреждение «малый ток».

Слабый тестовый ток в железных или гибких клещах. Результат может быть искажен. Предел - железные клещи < 1 мА, гибкие клещи < 5 мА.

Функции измерения..... селективное измерение (железные, гибкие клещи), 2клещевой метод, пассивное измерение, проверка провода заземления опоры, измерение силы тока гибкими и железными клещами.

Токоизмерительные клещи	Дополнительная погрешность при выходе за предел слабого тока			
	Обозначение	Предел	Дополнительная погрешность	
Железные клещи (А1018)	Ic	< 1 mA	±(10 % от измеренного значения + 2 е. м. р.*)	
Гибкие клещи (А1487)	lf1, lf2, lf3, lf4	< 5 mA	±(10 % от измеренного значения + 3 е. м. р.*)	

*е. м. р. – единица младшего разряда

При выходе тока клещей за предельное значение на 70 % от предела (Ic < 0,3 мА и If1-4 < 1,5 мА) результат измерения аннулируется.

Выход за предел диапазона измерений. Измерение невозможно запустить или отобразить!

 При работе только с одними, двумя или тремя гибкими клещами одни из них обязательно следует подключать к разъему F1 (порт синхронизации).

Разъем F1 – клещи №1 (вход синхронизации) не подключены к измерителю. Всегда следует сначала подключить одни клещи к разъему F1.

Следите за правильностью указания в параметрах измерения количества витков клещей.

 Для правильного измерения фазы следите, чтобы стрелка на корпусе клещей указывала в нужную сторону.

Ŧ	Отрицательный ток измерения в железных или гибких клещах, проверьте правильность ориентации гибких клещей [↑ ↓].
Selective If1 10.3 mA If2-10.2 mA If3 84.9 mA If4-10.3 mA	Отрицательный ток измерения в гибких клещах If2 If4 (указан знак минус «-»).

15.10 Влияние помех

Определение помехи:

Оказание значительного влияния (по напряжению/ току) на частотах измерения системы: 16 2/3 Гц, 50 Гц, 60 Гц, 400 Гц или на пост. токе (частоты согласно ст. IEC 61557-5).

Функция измерения слективное (железные, гибкие клещи) измерения, селективное (железные, гибкие клещи) измерение, методы Веннера и Шлумбергера, ВЧ-измерение сопротивления заземления (25 кГц), измерение потенциала грунта.

Макс. напряжение помехи на выводах H, S, ES и E40 В скз

Макс. ток помехи через:

Частота помехи	Тестовая частота	Подавление помехи (* см. прим.)
400 Гц	55 Гц 15,0 кГц	> 80 дБ
60 Fu	55 Гц	> 50 дБ
отц	82 Гц 15,0 кГц	> 80 дБ
50 Fu	55 Гц	> 50 дБ
зотц	82 Гц 15,0 кГц	> 80 дБ
16 2/3 Гц	55 Гц 15,0 кГц	> 80 дБ
Постоянный ток	55 Гц 15,0 кГц	> 80 дБ

Функция измерения2-клещевой метод

Макс. ток помехи через:

железные клещи (A1018).....5 А скз (Re < 200м) 1 А скз (Re > 200м)

Примеры воздействия помех (по напряжению/ по току)

Значок «помеха»

Во время измерения обнаружены сильные электрические помехи. Результат может быть искажен. *Частота помехи близка* (±6 %) к частоте измерения.

 Слишком высокие уровни сигналов на разъемах H, S, ES, E, в токоизмерительных клещах, F1, F2, F3 или F4.

Возможные причины: достигнуто максимальное значение напряжения или тока помехи, проверьте количество витков гибких клещей.

Выход за предел диапазона измерений. Измерение невозможно запустить или отобразить!

Формула отношения сигнал/ шум

$$SNR_{db} = 20 * \log_{10} \left(\frac{A_{CUTHAJ}}{A_{UUYM}} \right)$$

15.11 Подрезультаты в функциях измерения

Подрезультат	Диапазон измерения	Разрешение	Погрешность
Rp, Rc	От 0 Ом до 49,9 кОм	От 1 Ом до 0,1 кОм	±(8 % от измеренного значения + 3 е. м. р.)
Re	От 0,01 Ом до 19,9 кОм	От 0,01 Ом до 0,1 кОм	±(8 % от измеренного значения + 3 е. м. р.)
le	От 0,01 до 999 мА	От 0,01 до 1 мА	±(3 % от измеренного значения + 3 е. м. р.)
lc	От 0,01 мА до 9,99 А	От 0,01 мА до 0,01 А	±(5 % от измеренного значения + 3 е. м. р.)
Us	От 0,01 до 49,9 В	От 0,01 до 0,1 В	±(1 % от измеренного значения + 3 е. м. р.)
lf1, lf2, lf3, lf4	От 0,1 мА до 49,9 А	От 0,1 мА до 0,1 А	±(5 % от измеренного значения + 3 е. м. р.)
Zsel1, Zsel2, Zsel3, Zsel4	От 0,1 Ом до 19,9 кОм	От 0,1 Ом до 0,1 кОм	±(8 % от измеренного значения + 3 е. м. р.)
f	От 40,0 Гц до 25,0 кГц	От 0,1 мА до 0,1 А	±(0,2 % от измеренного значения + 1 е. м. p.)
lgen	От 0,01 до 999 мА	От 0,01 до 1 мА	±(2 % от измеренного значения + 2 е. м. р.)
lf_sum	От 0,01 мА до 99,9 А	От 0,01 до 0,1 мА	±(5 % от измеренного значения + 3 е. м. р.)
Uh, Us, Ues	От 0,01 до 49,9 В	От 0,01 до 0,1 В	±(1 % от измеренного значения + 3 е. м. р.)
~I	От 0,1 до 999 мА	От 0,1 до 1 мА	±(2 % от измеренного значения + 2 е. м. р.)
R, X	От 1 Ом до 19,9 кОм	От 1 до 0,1 Ом	Только как индикатор
φ	От 1°до 360°	1 °	Только как индикатор
ldc	От 0,1 до 999 мА	От 0,1 до 1 мА	±(2 % от измеренного значения + 2 е. м. р.)

15.12 Основные характеристики

Питание от батареи Время зарядки от батареи	14,4 В постоянного тока (4,4 А*ч Li-ion) типовое 4.5 ч (после глубокого разряда)
	~90_260 B 45-65 Fu 100 BA
Категория перенапряжений	300 B CAT II
Время работы от батареи:	
В дежурном состоянии	> 24 ч
При измерениях Таймер автоматического отключения	> 8 ч непрерывных измер. 4-проводным методом, Rc < 2 кОм 10 мин (дежурный режим)
Класс защиты Категория измерения	усиленная изоляция 🔲 300 В САТ IV
Степень загрязнения	2
Степень защиты оболочки	– IP 65 (закрытый корпус), IP 54 (открытый корпус)
Габариты (ш × в × г)	36 х 16 х 33 см
Bec	6,0 кг, (без принадлежностей)
Звуковая / визуальная сигнализация	да
Экран	4,3дюйма (10,9 см) 480 × 272 пикселей ТFT цветной сенсорный
Нормальные условия:	
Нормированный диапазон температуры	25 °C ± 5 °C
Нормированный диапазон отн. влажности	40 % 60 %
Условия эксплуатации:	
Диапазон рабочей температуры	-10 °C 50 °C
Максимальная относительная влажность	90 % (0 °C 40 °C), без образования конденсата
рабочая высота над уровнем моря	до 3000 м
Условия хранения:	
Диапазон температуры	-10 °C 70 °C
Максимальная относительная влажность	90 % (-10 °C 40 °C)
	80 % (40 °C 60 °C)
Связь по USB:	
USB	гальваническая развязка
Скорость передачи данных	115200 б/с
Разъем	стандартный USB разъем типа В
Связь по Bluetooth:	
Код для связи:	NNNN
Скорость передачи данных:	115200 6/c
Модуль Bluetooth	класс 2
Данные:	
Объем памяти	>1 Гб

ПО для ПК да

Характеристики представлены для доверительной вероятности 95 %.

Дополнительная погрешность измерения при использовании измерителя при температурах, находящихся вне диапазона 25 °C ± 5 °C, составляет ±0,2 % от измеренного значения на каждый градус °C отклонения, плюс 1 единица младшего разряда.

Приложение А – Объекты структуры

Используемые в организаторе памяти элементы структуры зависят от профиля измерителя.

Рисунок А.1: Иерархия организатора памяти

Символ	наименование по умолчанию	Параметры:
>_	Узел	/
	Проект	название проекта, описание проекта
ñ	Здание	название, описание, местоположение, тип, номинальная мощность, номинальное напряжение
Ŭ	Подстанция	название, описание, местоположение, тип, номинальная мощность, номинальное напряжение
F	Электростанция	название, описание, местоположение, тип, номинальная мощность
赛	Опора ЛЭП	название, описание, местоположение, тип, типа материала, номинальная мощность, номинальное напряжение
ال	Освещение общественных мест	название, описание, местоположение, тип материала, номинальное напряжение
Ŭ	Трансформатор	название, описание, местоположение, номинальная мощность, номинальное напряжение
źV	Стержневой молниеотвод	название, описание, местоположение
Ψ.	Заземляющий электрод	название, описание, местоположение
田	Решетка	название, описание, местоположение
***	Ограждение	название, описание, местоположение
5	Труба	название, описание, местоположение

Приложение В – Таблица выбора профилей

Профили измерителя и соответствующие функции

Доступные функции измерения		Код профиля Наимен	ARAB MI 3290	ARAA MI 3290	ARAC MI 3290	ARAD
		ование	GF	GL	GP	MI 3290 GX
	Группа	Значок	GF	GL	GP	GF <mark>GL GP</mark>
2-проводное измерение	Заземл.		•	•	•	•
3-проводное измерение	Заземл.		•	•	•	•
4-проводное измерение	Заземл.		•	•	•	•
Селективное измерение (железные клещи)	Заземл.			•		•
2-клещевое измерение	Заземл.			•		•
ВЧ-измерение	Заземл.			•		•
Селективное измерение (гибкие клещи 1 – 4 шт.)	Заземл.				•	•
Пассивное измерение (гибкие клещи 1 – 4 шт.)	Заземл.				•	•
Метод Веннера	Удельное сопр.		•	•	•	•
Метод Шлумбергера	Удельное сопр.		٠	•	•	•
Импульсное измерение	Импульсная			•		•
Омметр (200 мА)	Сопротивление (постоянный ток) Сопротивление		•			•
Омметр (7 мА)	(постоянный ток)		·			·
Измерение импеданса	Импеданс		٠			•
переменным током	(переменныи ток)		•			
Потенциал Генерируемый ток для напряжения	Потенциал		•			•
прикосновения и шага	Потенциал					
Проверка провода заземления опоры	Измерение				•	•
Измерение тока (железные клещи) Измерение тока (гибкие	Ток			•		•
клещи)	Ток				•	•
Проверка вольтметра	Самодиагностика	1	•	•	•	•
Проверка амперметра Проверка железных	Самодиагностика	I	•	•	•	•
гибких клещей	Самодиагностика	l			•	
			F			

Приложение С - Функциональные возможности и установка штырей

Для стандартного измерения сопротивления используйте два испытательных штыря (штырь напряжения и штырь тока). Важно, чтобы испытательные штыри были установлены правильно, с учетом воронки напряжения. Более подробно об этом изложено в справочнике: Заземление, установка перемычек (создание эквипотенциальных поверхностей) и экранирование для электронного оборудования и установок.

Рисунок С.1: Размещение штырей

Разъем Е подсоединяется к заземляющему электроду.

Штырь Н предназначен для замыкания измерительного контура. Напряжение между штырем S и E представляет собой падение напряжения на измеряемом сопротивлении. Правильная установка штырей имеет решающее значение. Если штырь S поместить слишком близко к системе заземления, то можно будет измерять только малую часть сопротивления (обследовать только часть воронки напряжения). Если штырь S расположен слишком близко к штырю H, то результат измерения сопротивления

заземления исказит воронка напряжения Н.

Для правильного размещения измерительного штыря важно знать размер системы заземления. Параметр **a** отображает максимальный размер заземляющего электрода (или системы электродов) и может быть определен в соответствии с рис.C2. MI 3290

Арматурная сетка в бетоне

Рисунок С.З. прямолинейное размещение штырей

После определения максимального размера параметра **a** системы заземления можно выполнить измерения, правильно разместив измерительные штыри. Трехкратная установка испытательного штыря S (S'',S, S') нужна для проверки, что выбранное расстояние **d1** достаточно длинное.

Расстояние от испытываемого заземляющего электрода системы, подключаемого к разъему E/ES, до токового штыря H должно составлять:

 $d_1 \ge 5a$

Расстояние от испытываемого заземляющего электрода системы, подключаемого к разъему E/ES, до штыря измерения потенциала S должно составлять:

 $d_2 = 0,62d_1 - 0,38a_1$ [s]

а1..... расстояние между точкой подключения к системе заземления и центром.

Измерение 1

□ Расстояние от заземляющего электрода, подключаемого к разъему E/ES, до штыря измерения потенциала (напряжения) S должно составлять: *d*₂

Измерение 2

Расстояние от заземляющего электрода, подключаемого к разъему E/ES, до штыря измерения потенциала (напряжения) S должно составлять:

$$d_2 = 0,52d_1 - 0,38a_1(S'')$$

Измерение 3

Расстояние от заземляющего электрода, подключаемого к разъему E/ES, до штыря измерения потенциала (напряжения) S должно составлять:

$$d_2 = 0,72d_1 - 0,38a_1(S')$$

При правильном выборе **d1** результаты измерений 2 и 3 будут симметричны относительно результата измерения 1. Различия результатов измерения (измерения 2 - измерения 1, измерения 3 - измерения 2) не должны превышать 10 %. Большие различия или несимметричность результатов означает влияние воронок напряжения, в таком случае **d1** следует увеличить.

Примечания:

□ Начальная погрешность измерения сопротивления заземления зависит от расстояния **d1** и размером заземляющего электрода **a**. Это видно по табл. C4.

d1/a	Погрешность
5	10
10	5
50	1

Таблица С.4: Влияние соотношения d1/а на начальную погрешность

- Рекомендуется повторить измерения, помещая испытательные штыри в различные точки.
- Испытательные штыри также должны быть помещены в противоположном направлении от испытываемого электрода (180° или минимум 90°). Окончательный результат является средним двух или большего числа промежуточных результатов.
- □ Согласно стандарту IEC 60364-6 расстояния S'-S (измерение 2) и S"-S (измерение 3) должно составлять 6 м.

Равностороннее размещение

Рисунок С.5: Равностороннее размещение

Измерение 1

Расстояние от испытываемого заземляющего электрода до штыря измерения тока H и штыря напряжения S должно составлять как минимум: $d_2 = 5 \cdot a$

Измерение 2

Расстояние от заземляющего электрода до штыря напряжения S (S'): **d2**, с противоположной стороны относительно H.

Первое измерение проводится при установке штырей S и H на расстоянии **d2**. Точка подключения E, штыри H и S образуют равносторонний треугольник.

Для второго измерения штырь S должен быть установлен на том же расстоянии d2 с противоположной стороны относительно H. Точка подключения E, штыри H и S должны снова образовывать равносторонний треугольник. Разность между обоими измерениями не должна превышать 10%. Если разность превышает 10%, расстояние d2 должно быть пропорционально увеличено, и оба измерения должны быть выполнены повторно. Простым решением является замена местами штырей S и H (может быть выполнено со стороны измерителя). Окончательный результат является средним двух или большего числа промежуточных результатов.

Рекомендуется повторить измерения, помещая испытательные штыри в различные точки. Испытательные штыри также должны быть помещены в противоположном направлении от испытываемого электрода (180° или минимум 90°).

Сопротивления испытательных штырей

В общем случае испытательные штыри должны иметь низкое сопротивление относительно земли. Если сопротивление велико (обычно в результате сухости грунта), это может существенно повлиять на результаты измерений. Высокое сопротивление штыря Н означает, что большая часть тестового напряжения сконцентрирована на нем самом, и что измеренное на нем падение напряжения будет мало. Высокое сопротивление штыря S может образовать делитель напряжения с внутренним импедансом испытательного измерителя, что приведет к более низким результатам измерений. Сопротивление штыря для измерений может быть снижено:

- □ увлажнением пресной или соленой водой грунта в месте забивки штырей,
- □ заглублением штырей ниже обезвоженного слоя грунта,
- □ использованием штырей больших размеров или параллельным соединением штырей.

На дисплее испытательного оборудования компании METREL в случае высокого сопротивления испытательных штырей, согласно требованиям IEC 61557-5, появится соответствующее предупреждение. Все измерители сопротивления заземления компании METREL обеспечивают точные измерения при сопротивлениях штырей далеко за пределами, указанными в IEC 61557-5.

Рисунок С.6: Различные измеренные падения напряжения при высоком и низком сопротивлениях штырей

Приложение D – примеры импульсного и 3проводного измерений

Описание исследуемого объекта и схемы подключения:

Исследуемы й объект	Ro	Lo	Rc	Rp
Re1	1 Om	1 мкГн	50 Ом	200 Ом
Re2	1 Om	25 мкГн	50 Ом	200 Ом
Re3	1 Om	55 мкГн	50 Ом	200 Ом
Re4	1 Om	376 мкГн	50 Ом	200 Ом

Результаты импульсного измерения:

Импульсный [Zp]	Re1	Re2	Re3	Re4
10/350 мкс	1,0 Ом	1,1 Ом	2,0 Ом	12,6 Ом

Рисунок D.1: Осциллограмма на Re1

Рисунок D.3: Осциллограмма на Re3

Результаты измерения 3-проводным методом:

Рисунок D.2: Осциллограмма на Re2

Рисунок D.4: Осциллограмма на Re4

З-проводное измерение [Re]				Расчетное	е значение	импеданс	а	
Тестовая частота	Re1	Re2	Re3	Re4	Re1	Re2	Re3	Re4
55 Гц	1,04 Ом	1,10 Ом	1,08 Ом	1,11 Ом	1,0 Ом	1,0 Ом	1,0 Ом	1,0 Ом
164 Гц	1,04 Ом	1,11 Ом	1,08 Ом	1,17 Ом	1,0 Ом	1,0 Ом	1,0 Ом	1,1 Ом
660 Гц	1,04 Ом	1,11 Ом	1,11 Ом	1,93 Om	1,0 Ом	1,0 Ом	1,0 Ом	1,8 Ом
1,5 кГц	1,04 Ом	1,15 Ом	1,24 Ом	3,78 Ом	1,0 Ом	1,0 Ом	1,1 Ом	3,7 Ом
3,29 кГц	1,04 Ом	1,30 Ом	1,70 Ом	8,02 Ом	1,0 Ом	1,1 Ом	1,5 Ом	7,8 Ом
13,3 кГц	1,04 Ом	2,63 Ом	5,04 Ом	31,5 Ом	1,0 Ом	2,3 Ом	4,7 Ом	31,4 Ом

Приложение E - Программирование автоматических измерений в ПО Metrel ES Manager

В состав ПО Metrel ES Manager входит редактор автоматических измерений. В этом редакторе можно составлять программы автоматических измерений и сортировать их по группам, а также загружать их в измеритель.

I. Рабочее поле редактора автоматических измерений

Для вызова рабочего поля автоматических измерений во вкладке Home (домашняя) программы Metrel

ES Manager PC SW нажмите кнопку Autotest Editor. Рабочее поле редактора автоматических измерений поделено на четыре основных зоны. В зоне левой стороны (1), отображается структура выбранной группы автоматических измерений. В средней зоне отображаются элементы выбранного автоматического измерения. В зонах правой части отображаются доступные одиночные измерения

и список команд 😃 .

File Auto test Communication en New Save Close New Folder New Auto test Delete Upload mple pylon.atmpx X roup of Auto tests HF-Earth 25 kHz test		
ne Earth If HF-Earth 25 kHz test If HF-Earth 25 kHz test If HF-Earth 25 kHz test If A - pole (sweep analysis) Specific If Soil Resistivity Potential If Header BUZZER mode PAUSE PAUSE	Single test Measurement Q - Meter (7mA) Flex Clamps Meter RMS HF-Earth Resistance (25kHz) Impedance Meter Impulse Measurement Iron Clamp Meter RMS Passive (Flex Clamps 1-4) Flow Commands PAUSE BUZZER mode	
PAUSE SINGLE TEST OPERATION AFTER END OF TEST Result RESULT SCREEN		

Рисунок Е.1: Рабочее поле редактора автоматических измерений

Последовательность автоматического измерения инчинается с названия, описания и изображения, за которыми следуют первый этап (заголовок), один или нескольких этапов измерений и все завершается последним этапом (результатом). Последовательность автоматического измерения создаётся вставкой одиночных измерений и команд программы измерений .

BUZZER mode	
PAUSE	
DALICE	

 HF-Earth Resistance (25kHz)
 Steps
 2

 PAUSE

 SINGLE TEST

 OPERATION AFTER END OF TEST

Рисунок Е.2: Пример заголовка автоматического измерения

Рисунок Е.З: Пример измерительного этапа

Рисунок Е.4: Пример части с результатами автоматического измерения

II. Управление группами автоматических измерений

Пользователь может рассортировать автоматические измерения по группам. Каждая группа сохраняется в отдельном файле. В редакторе автоматических измерений можно открыть несколько файлов. В пределах группы автоматических измерений можно организовать иерархическую структуру с папками/ подпапками, в которых находятся автоматические измерения. Иерархическая структура активной группы автоматических измерений отображается с левой стороны рабочего поля редактора, см. рис. Е. 5.

Рисунок Е.5: Организация группы автоматических измерений

Кнопки вызова операций для группы автоматических измерений находятся в панели меню, которая расположена в верхней части рабочего поля редактора автоматических измерений.

Операции работы с файлами:

Операции группы автоматических измерений (также вызываются из контекстного меню по нажатию на папке правой кнопкой мыши):

Добавить новую папку/ подпапку в группу.

-12	Добавить новое автоматическое измерение в группу.			
*	Удалить: выбранное автоматическое измерение удаляются выбранная папка со всеми подпапками и автоматическими измерениями			
Команды конте измерении или	екстного меню по нажатию правой кнопки мыши на выбранном автоматическом папке:			
<u>i</u>	Автоматическое измерение: Редактирование названия, описания и изображения (см. рис. Е.6 <i>).</i> Папка: Редактирование имени папки			
1	Автоматическое измерение: Копировать в буфер обмена Папка: Копировать в буфер обмена со всеми подпапками и автоматическими измерениями			
×	Автоматическое измерение: Вырезать в буфер обмена Папка: Вырезать в буфер обмена со всеми подпапками и автоматическими измерениями			
值	Автоматическое измерение: Вставить в указанное место Папка: Вставить в указанное место			
Для изменения ДВОЙНОЙ ЩЕЛЧОК	ия названия объекта нужно выполнить двойной щелчок по его имени: Автоматическое присвоение названия измерению: Редактирование названия измерения Имя папки: Редактирование имени папки			
Автоматическо перетаскивание	е измерение или папку/подпапку можно переместить в новое место ем мышью:			
ПЕРЕТАСКИ-	Одно перетаскивание мышью эквивалентно вышеописанным «вырезать» и «вставить».			
ВАНИЕ МЫШЬЮ	переместить в папку			
	вставить			
	Name HF-Earth 25 kHz test Description Pylon Earth Resistance Test According to IEEE Std 81 – 1983			
	Image P 110kV.png X OK Cancel			

Рисунок Е.6: Редактирование заголовка автоматического измерения.

III. Элементы автоматического измерения

Этапы автоматических измерений

Есть три вида этапов автоматических измерений.

Заголовок

По умолчанию этап заголовка пустой.

В этап заголовка также можно добавить и другие команды программы.

Этап измерений

Этап измерений по умолчанию содержит одиночное измерение и Операцию после последовательности команд программы. В этап измерения также можно добавить и другие команды программы.

Результат

Этап результатов по умолчанию содержит команду **Result** (результат). В этап результата также можно добавить и другие команды программы.

Одиночные измерения

Одиночные измерения те же, что и в меню измерений Metrel ES Manager. Можно задать пределы и параметры. Но нельзя задать результаты и под-результаты.

Команды программы

Командами программы управляется последовательность измерений. Дополнительные сведения изложены в разделе «Описание команд программы».

Количество этапов измерения

Часто в ходе одно и то же измерение выполняется для нескольких точек испытываемого устройства. Можно задать кратность повторения этапа измерения. Все результаты отдельных измерений сохраняются в результате автоматического измерения так же, как если бы они были запрограммированы как результаты независимых этапов измерения.

IV. Создание/ изменение автоматического измерения

При создании нового автоматического измерения «с нуля» по умолчанию предлагается первый и последний этапы (заголовок и результаты). Этапы измерений вставляет пользователь.

Варианты:

Добавление этапа измерения	По двойному щелчку на одиночном измерении в конце последовательности измерительных этапов появится новый измерительный этап. Его можно перетащить мышью в нужное место автоматического измерения.
Добавление команд программы	Выбранную команду последовательности можно перетащить мышью из списка команд в нужное место любого этапа автоматического измерения.
Изменение позиции команды программы в пределах одного этапа	Можно выполнить щелчком по элементу и нажатиями клавиш .
Просмотр/ изменение параметров команд программы или одиночных измерений.	Выполняется двойным щелчком мыши по элементу.
Задание количества этапов измерения	Выполняется установкой числа от 1 до 20 в поле ввода Steps 1 靠

Щёлкните правой кнопкой мыши по выбранному этапу измерения/ команде программы

N.		Сору – Paste before (копировать – вставить перед)
3	Сору	Этап измерения/ команду программы можно скопировать и вставить
	Paste before	перед выбранным местом этого или другого автоматического
	Paste after	Copy – Paste alter (konuposats – вставить noche)
TECT		Этап измерения/ команду программы можно скопировать и вставить
IE31	Delete	под выбранным местом этого или другого автоматического
		измерения.
		Delete (удалить)

Удаление выбранного этапа измерения/ команды программы

V. Описание команд программы

Двойным щелчком мыши по вставленной команде открывается окно меню, в котором можно ввести текст или изображение, задать активизацию внешней сигнализации и внешних команд, а также установить параметры. Команды **Operation** (операция) по завершению измерения и страница **Results** (результаты) заданы по умолчанию, остальные можно выбрать из меню команд программы измерений.

Pause (пауза)

Команду **Pause** (пауза) с выводом на экран текстового сообщения или изображения можно вставить в любом месте среди этапов измерения. Можно просто вставить только значок, а можно и добавить к нему текстовое сообщение. В подготовленное поле **Text** (текст) диалогового окна с меню можно вставить любое текстовое сообщение.

Параметры:

Тип паузы Show text and/or warning (показать текст и/ или предупреждение)	🗹 установить, чтобы показать значок предупреждения
Показать изображение	🔎 кнопка вызова окна поиска изображения
Длительность, число секунд, бесконечно	нет ввода

Режим звуковой сигнализации

Об успешном или безуспешном измерении сигнализирует соответствующий звук зуммера.

- Успешное двойной звуковой сигнал после измерения
- Безуспешное длинный звуковой сигнал после измерения

Звуковой сигнал подаётся сразу после измерения одиночного измерения.

Параметры:	
Состояние	On (вкл.) – включение режима звуковой сигнализации
	Off (откл.) – выключение режима звуковой сигнализации

Операция по завершению измерения:

Эта команда управляет продолжением автоматического измерения, в зависимости от результата измерения.

Параметры:

Операция по завершению измерения: – pass (успешно) – fail (безуспешно) – no status (неопределенное состояние)	Можно задать отдельно операцию на случай успешного, неуспешного или неопределенного состояния.		
	Manual –	Ручной – останов выполнения последовательности измерения и ожидание соответствующей команды оператора (нажатия кнопки) для возобновления.	
	Auto –	Автоматический – автоматическое возобновление выполнения последовательности измерения.	