

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

CN.C.34.073.A No 58533

Срок действия до 14 апреля 2020 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Мультиметры цифровые серии VA1 модификаций VA-MM38, VA-MM42, VA-MM42R, VA-MM42RP, VA-MM55, VA-MM15, VA-MM16, VA-MM17

ИЗГОТОВИТЕЛЬ
SHANGHAI YIHUA V&A INSTRUMENT CO.,LTD., КНР

РЕГИСТРАЦИОННЫЙ № 60456-15

ДО<mark>КУМЕНТ НА</mark> ПОВЕРКУ ПМ 4431.021.02567136-2014

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 14 апреля 2015 г. № 444

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя	
Федерального агентства	

С.С.Голубев

№ 019941

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Мультиметры цифровые серии VA1 модификаций VA-MM38, VA-MM42, VA-MM42R, VA-MM42RP, VA-MM55, VA-MM15, VA-MM16, VA-MM17

Назначение средства измерений

Мультиметры цифровые серии VA1 модификаций VA-MM38, VA-MM42, VA-MM42R, VA-MM42RP, VA-MM55, VA-MM15, VA-MM16, VA-MM17, далее мультиметры, предназначены для измерения постоянного и переменного напряжения и тока, электрического сопротивления, емкости, частоты логического и аналитического сигналов, коэффициента заполнения (скважности), температуры, проверки p-n переходов (диодов) и целостности цепи (прозвонки).

Описание средства измерений

VA-MM15

VA-MM17

Мультиметры представляют собой компактные портативные многофункциональные измерительные приборы в ударопрочном исполнении, принцип действия которых основан на аналого-цифровом преобразовании входных сигналов. Управление процессом измерения осуществляется с помощью встроенного микропроцессора. Выбор режима работы и диапазонов осуществляется центральным переключателем. Функциональные клавиши служат для выбора специальных функций, а также для активизации дополнительных режимов измерения. Измеренные значения отображаются на жидкокристаллическом дисплее.

Отличие модификаций мультиметров цифровых серии VA1 заключается в различных функциональных возможностях и технических характеристиках.

Рисунок 1. Фотографии общего вида мультиметров цифровых серии VA1

VA-MM16

Рисунок 2. Фотография пломбирования мультиметров цифровых серии VA1

Метрологические и технические характеристики Метрологические характеристики приведены в таблицах 1-8. Таблица 1 - Режим измерения напряжение постоянного тока

Модификация	Диапазон	Разрешение (n)	Пределы допускаемой основной абсолютной
, , ,	измерений	1	погрешности
	50 мВ	0,001 мВ	$\pm (0.03\% \times U_x + 10 \times n) \text{ MB}$
	500 мВ	Ó,01 мВ	$\pm (0.03\% \times U_x + 6 \times n) \text{ MB}$
374 MM 420	5 B	0,0001 B	$\pm (0.03\% \times \hat{U_x} + 6 \times \hat{n}) B$
VA-MM38	50 B	ó,001 B	$\pm (0.03\% \times U_x + 6 \times n)$ B
	500 B	ó,01 B	$\pm (0.03\% \times U_x + 6 \times n)$ B
	1000 B	Ó,1 B	$\pm (0.03\% \times U_x + 6 \times n)$ B
	660 мВ	0,1 мВ	$\pm (0,5\% \times U_X + 5 \times n)$ мВ
	6,6 B	0,001 B	$\pm (0.8\% \times U_x + 5 \times n)$ B
VA-MM42	66 B	ó,01 B	$\pm (0.8\% \times U_x + 5 \times n)$ B
	660 B	Ó,1 B	$\pm (0.8\% \times U_x + 5 \times n)$ B
	1000 B	1 B	$\pm (1.0\% \times U_x + 2 \times n)$ B
	660 мВ	0,1 мВ	$\pm (0,5\% \times U_X + 5 \times n)$ мВ
	6,6 B	0,001 B	$\pm (0.8\% \times U_x + 5 \times n)$ B
VA-MM42R	66 B	0,01 B	$\pm (0.8\% \times U_x + 5 \times n)$ B
	660 B	0,1 B	$\pm (0.8\% \times U_x + 5 \times n)$ B
	1000 B	1 B	$\pm (1,0\% \times U_x + 2 \times n) B$
	660 мВ	0,1 мВ	$\pm (0.5\% \times U_x + 5 \times n) \text{ MB}$
	6,6 B	0,001 B	$\pm (0.8\% \times U_x + 5 \times n) B$
VA-MM42RP	66 B	0,01 B	$\pm (0.8\% \times U_x + 5 \times n)$ B
	660 B	0,1_B	$\pm (0.8\% \times U_x + 5 \times n) B$
	1000 B	1 B	$\pm (1,0\% \times U_x + 2 \times n) B$
	200 мВ	0,01 мВ	$\pm (0.05\% \times U_x + 10 \times n) \text{ MB}$
*** > 0 ***	2 B	0,0001 B	$\pm (0.05\% \times U_x + 10 \times n) B$
VA-MM55	20 B	0,001 B	$\pm (0.05\% \times U_x + 10 \times n) B$
	200 B	0,01 B	$\pm (0.05\% \times U_x + 10 \times n) B$
	1000 B	0,1 B	$\pm (0.05\% \times U_x + 10 \times n) B$
	400 MB	0,1 мВ	$\pm (1,0\% \times U_x + 10 \times n) \text{ MB}$
774 3 0 616	4 B	0,001 B	$\pm (0.5\% \times U_x + 3 \times n) B$
VA-MM15	40 B	0,01 B	$\pm (0.5\% \times U_x + 3 \times n) B$
	400 B	0,1 B	$\pm (0.5\% \times U_x + 3 \times n) B$
	1000 B	1 B	$\pm (0.5\% \times U_x + 3 \times n) B$
	200 мВ	0,1 мВ	$\pm (0.8\% \times U_x + 2 \times n) \text{ MB}$
374 NANA16	2 B	0,001 B	$\pm (0.8\% \times U_x + 2 \times n) B$
VA-MM16	20 B 200 B	0,01 B	$\pm (0.8\% \times U_x + 2 \times n) B$
		0,1 B	$\pm (0.8\% \times U_x + 2 \times n) B$
	1000 B 400 mB	1 B	$\pm (1,2\% \times U_x + 3 \times n) B$
	400 MB 4 B	0,1 мВ 0,001 В	$\pm (1.0\% \times U_x + 10 \times n) \text{ MB}$
VA-MM17	4 B 40 B		$\pm (0.5\% \times U_x + 3 \times n) B$
V A-IVIIVI I /	40 B 400 B	0,01 B 0,1 B	$\pm (0.5\% \times U_x + 3 \times n) B$
	1000 B	0,1 B 1 B	$\pm (0.5\% \times U_x + 3 \times n) B$ $\pm (0.5\% \times U_x + 3 \times n) B$
	1000 B	1 D	$\pm (\cup, 5\% \times \cup_{X} \pm 5 \times II) \mathbf{D}$

Где U_x – измеренное значение, n – разрешение.

Таблица 2 - Режим измерения напряжение переменного тока

таолица 2 - г сжим	измерения напряже	THE HEPEMEIIIO	lo loka	
Модификация	Диапазон измерений	Диапазон частот, Гц	Разрешение (n)	Пределы допускае- мой основной абсолют-
				ной
	2 B		0.0001 D	погрешности
	20 B		0,0001 B 0,001 B	$\pm (0.5\% \times U_x + 40 \times n) B$
VA-MM38	200 B	40 - 400	0,001 B	$\pm (0.5\% \times U_x + 40 \times n) B$ $\pm (0.5\% \times U_x + 40 \times n) B$
	1000 B		0,01 B	$\pm (0.5\% \times U_x + 40 \times n) B$ $\pm (0.5\% \times U_x + 40 \times n) B$
	660 MB		0,1 MB	$\pm (0.5\% \times U_x + 40 \times H) B$ $\pm (1.0\% \times U_x + 5 \times H) MB$
	6,6 B		0,001 B	$\pm (1,0\% \times U_X + 5 \times n) \text{ MB}$ $\pm (1,0\% \times U_X + 5 \times n) \text{ B}$
VA-MM42	66 B	40 - 400	0,001 B	$\pm (1,0\% \times U_X + 5 \times n) B$ $\pm (1,0\% \times U_X + 5 \times n) B$
V A-1VIIVI-42	660 B	40-400	0,01 B	$\pm (1,0\% \times U_x + 5 \times n) B$ $\pm (1,0\% \times U_x + 5 \times n) B$
	1000 B		1 B	$\pm (1,5\% \times U_x + 5 \times n) B$ $\pm (1,5\% \times U_x + 5 \times n) B$
	660 MB		0,1 MB	$\pm (1,0\% \times U_x + 5 \times n) \text{ MB}$
	6,6 B		0,001 B	$\pm (1,0\% \times U_x + 5 \times n) \text{ B}$
VA-MM42R	66 B	40 - 400	0,01 B	$\pm (1,0\% \times U_x + 5 \times n) B$
771 141141 1214	660 B	10 100	0,1 B	$\pm (1,0\% \times U_x + 5 \times n) B$
	1000 B		i B	$\pm (1,5\% \times U_x + 5 \times n) B$
	660 мВ		0,1 MB	$\pm (1,0\% \times U_x + 5 \times n) \text{ MB}$
	6,6 B		0,001 B	$\pm (1,0\% \times U_x + 5 \times n) B$
VA-MM42RP	66 B	40 - 400	0,01 B	$\pm (1.0\% \times U_x + 5 \times n) B$
, , , , , , , , , , , , , , , , , , , ,	660 B		0,1 B	$\pm (1,0\% \times U_x + 5 \times n) B$
	1000 B		1 B	$\pm (1,5\% \times U_x + 5 \times n) B$
	2 B		0,0001 B	$\pm (0.5\% \times U_x + 40 \times n) B$
37A 3A3A55	20 B	40 400	Ó,001 B	$\pm (0.5\% \times U_x + 40 \times n)$ B
VA-MM55	200 B	40 - 400	Ó,01 B	$\pm (0.5\% \times U_x + 40 \times n)$ B
	1000 B		0,1 B	$\pm (0.5\% \times U_x + 40 \times n)$ B
	400 мВ		0,1 мВ	$\pm (3.0\% \times U_x + 3 \times n) \text{ MB}$
	400 MB 4 B		0,1 MB 0,001 B	$\pm (1,0\% \times U_x + 3 \times n) B$
VA-MM15	40 B	40 - 500	0,001 B	$\pm (1,0\% \times U_x + 3 \times n) B$
V 7 1-1VIIVI I J	400 B	1 70 7 500	0,01 B	$\pm (1,0\% \times U_x + 3 \times n) B$ $\pm (1,0\% \times U_x + 3 \times n) B$
	1000 B		1 B	` /
				$\pm (1,0\% \times U_x + 3 \times n) B$
	200 мВ		0,1 мВ	$\pm (1,2\% \times U_x + 3 \times n) \text{ MB}$
VA NAMES	2 B	40 400	0,001 B	$\pm (0.8\% \times U_x + 3 \times n) B$
VA-MM16	20 B	40 - 400	0,01 B	$\pm (0.8\% \times U_x + 3 \times n) B$
	200 B		0,1 B	$\pm (0.8\% \times U_x + 3 \times n) B$
	700 B		1 B	$\pm (1,2\% \times U_x + 5 \times n) B$
	400 мВ		0,1 мВ	$\pm (3.0\% \times U_x + 3 \times n) \text{ MB}$
VA NANA17	4 B	40 500	0,001 B	$\pm (1,0\% \times U_x + 3 \times n) B$
VA-MM17	40 B	40 - 500	0,01 B	$\pm (1,0\% \times U_x + 3 \times n) B$
	400 B		0,1 B	$\pm (1,0\% \times U_x + 3 \times n) B$
	1000 B	<u> </u>	1 B	$\pm (1,0\% \times U_x + 3 \times n) B$

Где U_x – измеренное значение, n – разрешение.

Таблица 3 - Режим измерения силы постоянного тока

Модификация	Диапазон измерений	Разрешение (n)	Пределы допускаемой основной абсолютной погрешности		
VA-MM38	500 mkA 5000 mkA 50 mA 500 mA 5 A 10 A	0,01 мкА 0,1 мкА 0,001 мА 0,01 мА 0,0001 А 0,001 А	$\begin{array}{c} \pm (0,15\% \times I_x + 15 \times n) \\ \text{MKA} \\ \pm (0,15\% \times I_x + 10 \times n) \\ \text{MKA} \\ \pm (0,15\% \times I_x + 10 \times n) \text{ MA} \\ \pm (0,15\% \times I_x + 10 \times n) \text{ MA} \\ \pm (0,5\% \times I_x + 10 \times n) \text{ A} \\ \pm (0,5\% \times I_x + 10 \times n) \text{ A} \end{array}$		

	660 мкА	0,1 мкА	$\pm (1,5\% \times I_x + 5 \times n)$ MKA
	6600 мкА	1 MKA	$\pm (1,5\% \times I_X + 5 \times I) \text{ MKA}$ $\pm (1,5\% \times I_X + 5 \times I) \text{ MKA}$
VA-MM42	66 mA	0,01 mA	$\pm (1.8\% \times I_x + 8 \times n) \text{ MAA}$
VA-MIVI-2	600 MA	0,1 MA	
	10 A		$\pm (1.8\% \times I_x + 8 \times n) \text{ MA}$
	660 мкА	0,01 A	$\pm (2.0\% \times I_x + 8 \times n) A$
		0,1 мкА	$\pm (1.5\% \times I_x + 5 \times n) \text{ MKA}$
VA-MM42R	6600 мкА	1 мкА	$\pm (1,5\% \times I_x + 5 \times n) \text{ MKA}$
VA-MM42R	66 мА	0,01 мА	$\pm (1.8\% \times I_x + 8 \times n) \text{ MA}$
	600 MA	0,1 MA	$\pm (1.8\% \times I_x + 8 \times n) \text{ MA}$
	10 A	0,01 A	$\pm (2,0\% \times I_x + 8 \times n) A$
	660 мкА	0,1 мкА	$\pm (1,5\% \times I_x + 5 \times n)$ мкА
W. 10 (10 P.	6600 мкА	1 мкА	$\pm (1,5\% \times I_x + 5 \times n)$ мкА
VA-MM42RP	66 мА	0,01 мА	$\pm (1.8\% \times I_x + 8 \times n) \text{ MA}$
	600 мА	0,1 мА	$\pm (1.8\% \times I_x + 8 \times n) \text{ MA}$
	10 A	0,01 A	$\pm (2,0\% \times I_x + 8 \times n) A$
VA-MM55	200 мА	0,01 мА	$\pm (0.2\% \times I_x + 20 \times n) \text{ MA}$
	10 A	0,001 A	$\pm (0.2\% \times I_x + 20 \times n) A$
	400 мкА	0,1 мкА	$\pm (1,5\% \times I_X + 3 \times n)$ MKA
	4000 мкА	1 мкА	$\pm (1,5\% \times I_x + 3 \times n)$ MKA
VA-MM15	40 мА	0,01 мА	$\pm (1,5\% \times I_x + 3 \times n) \text{ MA}$
V 71-1VIIVI13	400 мА	0,1 мА	$\pm (1,5\% \times I_x + 3 \times n)$ MA
	4 A	0,001 A	$\pm (2.0\% \times I_x + 5 \times n) A$
	10 A	0,01 A	$\pm (2.0\% \times I_x + 5 \times n) A$
	200 мкА	0,1 мкА	$\pm (0.8\% \times I_x + 3 \times n) \text{ MKA}$
	2 мА	0,001 мА	$\pm (0.8\% \times I_x + 3 \times n) \text{ MA}$
VA-MM16	20 мА	0,01 мА	$\pm (0.8\% \times I_x + 3 \times n) \text{ MA}$
	200 мА	0,1 мА	$\pm (1.5\% \times I_x + 2 \times n)$ MA
	10 A	0,01 A	$\pm (2,0\% \times \hat{I}_x + 5 \times \hat{n}) A$
	400 мкА	0,1 мкА	$\pm (1.5\% \times I_x + 3 \times n)$ MKA
	4000 мкА	1 мкА	$\pm (1.5\% \times I_x + 3 \times n)$ MKA
X/A N/N/17	40 мА	0,01 мА	$\pm (1,5\% \times \hat{I}_x + 3 \times n) \text{ MA}$
VA-MM17	400 мА	0,1 мА	$\pm (1,5\% \times I_x + 3 \times n) \text{ MA}$
	4 A	0,001 A	$\pm (2,0\% \times I_x + 5 \times n) A$
	10 A	0,01 A	$\pm (2.0\% \times I_x + 5 \times n) A$
	·		

Где I_{x} – измеренное значение, n – разрешение.

Таблица 4 - Режим измерения силы переменного тока

таолица 4 - г сжим измерения силы переменного тока				
Модификация	Диапазон измерений	Диапазон частот, Гц	Разрешение (n)	Пределы допускаемой основной абсолютной погрешности
VA-MM38	500 mkA 5000 mkA 50 mA 500 mA 5 A 10 A	40 - 20000	0,01 мкА 0,1 мкА 0,001 мА 0,01 мА 0,0001 А 0,001 А	$\begin{array}{l} \pm (0,75\% \times I_x + 20 \times n) \text{ MKA} \\ \pm (0,75\% \times I_x + 20 \times n) \text{ MKA} \\ \pm (0,75\% \times I_x + 20 \times n) \text{ MA} \\ \pm (0,75\% \times I_x + 20 \times n) \text{ MA} \\ \pm (0,75\% \times I_x + 20 \times n) \text{ A} \\ \pm (1,0\% \times I_x + 10 \times n) \text{ A} \end{array}$
VA-MM42	660 мкА 6600 мкА 66 мА 600 мА 10 А	-	0,1 мкА 1 мкА 0,01 мА 0,1 мА 0,01 А	$\begin{array}{l} \pm (1,0\% \times I_{x} + 3 \times n) \text{ MKA} \\ \pm (1,0\% \times I_{x} + 3 \times n) \text{ MKA} \\ \pm (1,5\% \times I_{x} + 3 \times n) \text{ MA} \\ \pm (1,5\% \times I_{x} + 3 \times n) \text{ MA} \\ \pm (1,8\% \times I_{x} + 5 \times n) \text{ A} \end{array}$
VA-MM42R	660 mkA 6600 mkA 66 mA 600 mA 10 A	-	0,1 мкА 1 мкА 0,01 мА 0,1 мА 0,01 А	$\begin{array}{l} \pm (1,0\% \times I_{x} + 3 \times n) \text{ MKA} \\ \pm (1,0\% \times I_{x} + 3 \times n) \text{ MKA} \\ \pm (1,5\% \times I_{x} + 3 \times n) \text{ MA} \\ \pm (1,5\% \times I_{x} + 3 \times n) \text{ MA} \\ \pm (1,8\% \times I_{x} + 5 \times n) \text{ A} \end{array}$

VA-MM42RP	660 мкА 6600 мкА 66 мА 600 мА	-	0,1 мкА 1 мкА 0,01 мА 0,1 мА	$\pm (1,0\% \times I_x + 3 \times n)$ мкА $\pm (1,0\% \times I_x + 3 \times n)$ мкА $\pm (1,5\% \times I_x + 3 \times n)$ мА $\pm (1,5\% \times I_x + 3 \times n)$ мА
VA-MM55	10 A 200 мА 10 A	-	0,01 A 0,01 mA 0,001 A	$\begin{array}{c} \pm (1.8\% \times I_x + 5 \times n) \text{ A} \\ \pm (1.0\% \times I_x + 30 \times n) \text{ MA} \\ \pm (1.0\% \times I_x + 30 \times n) \text{ A} \end{array}$
VA-MM15	400 мкА 4000 мкА 40 мА 400 мА 4 А 10 А	40 - 200	0,1 мкА 1 мкА 0,01 мА 0,1 мА 0,001 A 0,01 A	$\begin{array}{c} \pm (1,8\% \times I_{x} + 5 \times n) \text{ MKA} \\ \pm (1,8\% \times I_{x} + 5 \times n) \text{ MKA} \\ \pm (1,8\% \times I_{x} + 5 \times n) \text{ MA} \\ \pm (1,8\% \times I_{x} + 5 \times n) \text{ MA} \\ \pm (1,8\% \times I_{x} + 5 \times n) \text{ MA} \\ \pm (3,0\% \times I_{x} + 8 \times n) \text{ A} \\ \pm (3,0\% \times I_{x} + 8 \times n) \text{ A} \end{array}$
VA-MM16	200 mkA 2 mA 20 mA 200 mA 10 A	40 - 400	0,1 мкА 0,001 мА 0,01 мА 0,1 мА 0,01 А	$\begin{array}{c} \pm (2,0\% \times I_x + 3 \times n) \text{ MKA} \\ \pm (1,0\% \times I_x + 3 \times n) \text{ MA} \\ \pm (1,0\% \times I_x + 3 \times n) \text{ MA} \\ \pm (1,8\% \times I_x + 3 \times n) \text{ MA} \\ \pm (3,0\% \times I_x + 5 \times n) \text{ A} \end{array}$
VA-MM17	400 мкА 4000 мкА 40 мА 400 мА 4 А 10 А	40 – 200	0,1 mkA 1 mkA 0,01 mA 0,1 mA 0,001 A 0,01 A	$\begin{array}{l} \pm (1,8\% \times I_x + 5 \times n) \text{ MKA} \\ \pm (1,8\% \times I_x + 5 \times n) \text{ MKA} \\ \pm (1,8\% \times I_x + 5 \times n) \text{ MA} \\ \pm (1,8\% \times I_x + 5 \times n) \text{ MA} \\ \pm (1,8\% \times I_x + 5 \times n) \text{ MA} \\ \pm (3,0\% \times I_x + 8 \times n) \text{ MA} \\ \pm (3,0\% \times I_x + 8 \times n) \text{ MA} \end{array}$

Где I_{x} – измеренное значение, n – разрешение.

Таблица 5 - Режим измерения электрического сопротивления

Модификация	Диапазон	Разрешение (n)	Пределы допускаемой основной абсолютной
тодификация	измерений	т азрешение (п)	погрешности
	500 Ом	0,01 Ом	$\pm (0.1\% \times R_x + 10 \times n)$ OM
	5 кОм	0,0001 кОм	$\pm (0,1\% \times R_x^{n} + 5 \times n)$ кОм
VA-MM38	50 кОм	0,001 кОм	$\pm (0,1\% \times R_x + 5 \times n) \text{ кОм}$
V A-IVIIVI38	500 кОм	0,01 кОм	$\pm (0,1\% \times R_x + 5 \times n) \text{ кОм}$
	5 МОм	0,0001 МОм	$\pm (0,1\% \times R_x + 10 \times n)$ MOM
	50 МОм	0,001 МОм	$\pm (0.5\% \times R_x + 10 \times n)$ MOM
	660 Ом	0,1 Ом	$\pm (1,2\% \times R_x + 2 \times n)$ OM
	6,6 кОм	0,001 кОм	$\pm (1,2\% \times R_x + 2 \times n)$ кОм
VA-MM42	66 кОм	0,01 кОм	\pm (1,2%×R _x +2×n) κO _M
VA-IVIIVI42	660 кОм	0,1 кОм	$\pm (1,2\% \times R_x + 2 \times n)$ кОм
	6,6 МОм	0,001 МОм	$\pm (1,2\% \times R_x + 2 \times n)$ MOM
	66 МОм	0,01 МОм	$\pm (2.0\% \times R_x + 5 \times n)$ MOM
	660 Ом	0,1 Ом	$\pm (1,2\% \times R_X + 2 \times n)$ OM
	6,6 кОм	0,001 кОм	$\pm (1,2\% \times R_x + 2 \times n)$ кОм
VA-MM42R	66 кОм	0,01 кОм	$\pm (1,2\% \times R_x + 2 \times n)$ кОм
VA-IVIIVI-12IX	660 кОм	0,1 кОм	$\pm (1,2\% \times R_x + 2 \times n)$ кОм
	6,6 МОм	0,001 МОм	$\pm (1,2\% \times R_x + 2 \times n)$ MOM
	66 МОм	0,01 МОм	$\pm (2.0\% \times R_X + 5 \times n)$ MOM
	660 Ом	0,1 Ом	$\pm (1,2\% \times R_X + 2 \times n)$ Ом
	6,6 кОм	0,001 кОм	$\pm (1,2\% \times R_x + 2 \times n)$ кОм
VA-MM42RP	66 кОм	0,01 кОм	$\pm (1,2\% \times R_x + 2 \times n)$ кОм
V/1 1/11/11/21d	660 кОм	0,1 кОм	$\pm (1,2\% \times R_x + 2 \times n)$ кОм
	6,6 МОм	0,001 МОм	$\pm (1,2\% \times R_x + 2 \times n)$ MOM
	66 МОм	0,01 МОм	$\pm (2.0\% \times R_x + 5 \times n)$ MOM
	200 Ом	0,1 Ом	$\pm (0.5\% \times R_x + 10 \times n)$ OM
	2 кОм	0,001 кОм	$\pm (0.5\% \times R_x + 10 \times n)$ кОм
VA-MM55	20 кОм	0,01 кОм	$\pm (0,5\% \times R_x + 10 \times n)$ кОм
V11 1/11/100	200 кОм	0,1 кОм	$\pm (0.5\% \times R_x + 10 \times n)$ кОм
	2 МОм	0,001 МОм	$\pm (0.5\% \times R_x + 10 \times n) MOM$
	20 МОм	0,01 МОм	$\pm (0.5\% \times R_x + 10 \times n) MOM$

Модификация	Диапазон измерений	Разрешение (n)	Пределы допускаемой основной абсолютной погрешности
VA-MM15	400 Ом 4 кОм 40 кОм 400 кОм 4 МОм 40 МОм	0,1 Om 0,001 kOm 0,01 kOm 0,1 kOm 0,001 MOm 0,01 MOm	$\begin{array}{c} \pm (0.5\% \times R_x + 3 \times n) \text{ OM} \\ \pm (0.5\% \times R_x + 2 \times n) \text{ KOM} \\ \pm (0.5\% \times R_x + 2 \times n) \text{ KOM} \\ \pm (0.5\% \times R_x + 2 \times n) \text{ KOM} \\ \pm (0.5\% \times R_x + 2 \times n) \text{ KOM} \\ \pm (0.5\% \times R_x + 2 \times n) \text{ MOM} \\ \pm (1.5\% \times R_x + 3 \times n) \text{ MOM} \end{array}$
VA-MM16	200 Ом 2 кОм 20 кОм 200 кОм 2 МОм 20 МОм 200 МОм	0,1 Om 0,001 кОм 0,01 кОм 0,1 кОм 0,001 МОм 0,01 МОм 0,1 МОм	$\begin{array}{c} \pm (0.8\% \times R_x + 3 \times n) \text{ OM} \\ \pm (0.8\% \times R_x + 2 \times n) \text{ kOm} \\ \pm (0.8\% \times R_x + 2 \times n) \text{ kOm} \\ \pm (0.8\% \times R_x + 2 \times n) \text{ kOm} \\ \pm (0.8\% \times R_x + 2 \times n) \text{ kOm} \\ \pm (0.8\% \times R_x + 2 \times n) \text{ MOm} \\ \pm (1.0\% \times R_x + 2 \times n) \text{ MOm} \\ \pm (5.0\% \times R_x + 10 \times n) \text{ MOm} \end{array}$
VA-MM17	400 Ом 4 кОм 40 кОм 400 кОм 4 МОм 40 МОм	0,1 Om 0,001 kOm 0,01 kOm 0,1 kOm 0,001 MOm 0,01 MOm	$\begin{array}{c} \pm (0.5\% \times R_x + 3 \times n) \text{ OM} \\ \pm (0.5\% \times R_x + 2 \times n) \text{ KOM} \\ \pm (0.5\% \times R_x + 2 \times n) \text{ KOM} \\ \pm (0.5\% \times R_x + 2 \times n) \text{ KOM} \\ \pm (0.5\% \times R_x + 2 \times n) \text{ MOM} \\ \pm (0.5\% \times R_x + 3 \times n) \text{ MOM} \end{array}$

Где R_{x} – измеренное значение, n – разрешение.

Таблица 6 - Режим измерения температуры

Таолица о - г сжим изми	<u> </u>		Пределы допускаемой
Модификация	Диапазон_	Разрешение (n)	основной абсолютной
1110/11411111	измерений	l aspemenne (n)	погрешности
	-55 °C	0,1 °C	$\pm (5.0\% \times t_x + 4 \times n)$ °C
	0 °C	0,1 °C	$\pm (3.0\% \times t_x + 3 \times n) \circ C$
VA-MM42	400 °C	0,1 °C	$\pm (3,0\% \times t_x + 3 \times n) \circ C$ $\pm (3,0\% \times t_x + 3 \times n) \circ C$
	1000 °C	1°C	
			±2,0% °C
	-55 °C	0,1 °C	$\pm (5.0\% \times t_x + 4 \times n) \circ C$
VA-MM42R	0 °C	0,1 °C	$\pm (3.0\% \times t_x + 3 \times n) \circ C$
V111/1/1/1/1	400 °C	0,1 °C	$\pm (3.0\% \times t_x + 3 \times n) \circ C$
	1000 °C	1 °C	±2,0% °C
	-55 °C	0,1 °C	$\pm (5.0\% \times t_x + 4 \times n) \circ \overline{C}$
VA-MM42RP	0 °C	0,1 °C	$\pm (3.0\% \times t_x + 3 \times n)$ °C
V A-IVIIVI42RP	400 °C	0,1 °C	$\pm (3.0\% \times t_x + 3 \times n)$ °C
	1000 °C	ĺ °C	+2,0% °C
	-200 °C	0,1 °C	$\pm (1,0\% \times t_x + 10 \times n) \circ C$
VA-MM55	-100 °C	0,1 ° C	$\pm (0.5\% \times t_x + 10 \times n) \circ C$
	1300 °C	0,1 °C	$\pm (0.5\% \times t_x + 10 \times n)$ °C
	-55 °C	0,1 °C	$\pm (9,0\% \times t_x + 2 \times n) \circ C$
VA-MM17	0 °C	0,1 °C	$\pm (9.0\% \times t_x + 2 \times n) \circ C$
V A-WHVII /	400 °C	0,1 °C	$\pm (2.0\% \times t_x + 3 \times n)$ °C
	1000 °C	ĺ í °C	$\pm (2.0\% \times t_x)$ °C

Где t_{x} – измеренное значение, n – разрешение.

Таблица 7 - Режим измерения электрической емкости

Таолица 7 - Режим изме	рения электрической ег	<u>МКОСТИ</u>	T
Модификация	Диапазон измерений	Разрешение (n)	Пределы допускаемой основной абсолютной погрешности
VA-MM38	50 нФ 500 нФ 5 мкФ 50 мкФ 500 мкФ 5000 мкФ	0,01 нФ 0,1 нФ 0,001 мкФ 0,01 мкФ 0,1 мкФ 1 мкФ	$\begin{array}{c} \pm (1,0\% \times C_x + 5 \times n) \ \text{H}\Phi \\ \pm (1,0\% \times C_x + 5 \times n) \ \text{H}\Phi \\ \pm (1,0\% \times C_x + 5 \times n) \ \text{M}\kappa\Phi \\ \pm (1,0\% \times C_x + 5 \times n) \ \text{M}\kappa\Phi \\ \pm (2,0\% \times C_x + 5 \times n) \ \text{M}\kappa\Phi \\ \pm (2,0\% \times C_x + 5 \times n) \ \text{M}\kappa\Phi \\ \pm (2,0\% \times C_x + 5 \times n) \ \text{M}\kappa\Phi \end{array}$
VA-MM42	6,6 нФ 66 нФ 660 нФ 6,6 мкФ 66 мкФ 660 мкФ 6,6 мФ 66 мФ	0,001 нФ 0,01 нФ 0,1 нФ 0,001 мкФ 0,01 мкФ 0,1 мкФ 0,001 мФ	$\begin{array}{c} \pm (5,0\% \times C_x + 5 \times n) \text{ H}\Phi \\ \pm (3,0\% \times C_x + 3 \times n) \text{ H}\Phi \\ \pm (3,0\% \times C_x + 3 \times n) \text{ H}\Phi \\ \pm (3,0\% \times C_x + 3 \times n) \text{ M}\Phi \\ \pm (5,0\% \times C_x + 3 \times n) \text{ M}\Phi \\ \pm (5,0\% \times C_x + 3 \times n) \text{ M}\Phi \\ \pm (5,0\% \times C_x + 3 \times n) \text{ M}\Phi \\ \pm (5,0\% \times C_x + 3 \times n) \text{ M}\Phi \\ \pm (30\% \times C_x) \text{ M}\Phi \end{array}$
VA-MM42R	6,6 нФ 66 нФ 660 нФ 6,6 мкФ 66 мкФ 660 мкФ 6,6 мФ 66 мФ	0,001 нФ 0,01 нФ 0,1 нФ 0,001 мкФ 0,01 мкФ 0,1 мкФ 0,001 мФ	$\begin{array}{c} \pm (5,0\% \times C_{x} + 5 \times n) \text{ H}\Phi \\ \pm (3,0\% \times C_{x} + 3 \times n) \text{ H}\Phi \\ \pm (3,0\% \times C_{x} + 3 \times n) \text{ H}\Phi \\ \pm (3,0\% \times C_{x} + 3 \times n) \text{ M}\kappa\Phi \\ \pm (5,0\% \times C_{x} + 3 \times n) \text{ M}\kappa\Phi \\ \pm (5,0\% \times C_{x} + 3 \times n) \text{ M}\kappa\Phi \\ \pm (5,0\% \times C_{x} + 3 \times n) \text{ M}\Phi \\ \pm (30\% \times C_{x}) \text{ M}\Phi \end{array}$
VA-MM42RP	6,6 нФ 66 нФ 660 нФ 6,6 мкФ 66 мкФ 660 мкФ 6,6 мФ 66 мФ	0,001 нФ 0,01 нФ 0,1 нФ 0,001 мкФ 0,01 мкФ 0,1 мкФ 0,001 мФ 0,01 мФ	$\begin{array}{c} \pm (5,0\% \times C_x + 5 \times n) \text{ H}\Phi \\ \pm (3,0\% \times C_x + 3 \times n) \text{ H}\Phi \\ \pm (3,0\% \times C_x + 3 \times n) \text{ H}\Phi \\ \pm (3,0\% \times C_x + 3 \times n) \text{ M}\Phi \\ \pm (5,0\% \times C_x + 3 \times n) \text{ M}\Phi \\ \pm (5,0\% \times C_x + 3 \times n) \text{ M}\Phi \\ \pm (5,0\% \times C_x + 3 \times n) \text{ M}\Phi \\ \pm (5,0\% \times C_x + 3 \times n) \text{ M}\Phi \\ \pm (30\% \times C_x) \text{ M}\Phi \end{array}$
VA-MM55	20 нФ 200 нФ 2 мкФ 20 мкФ 200 мкФ 1000 мкФ	0,01 нФ 0,1 нФ 0,001 мкФ 0,01 мкФ 0,1 мкФ 1 мкФ	$\pm (1,5\% \times C_x + 20 \times n)$ нФ $\pm (1,5\% \times C_x + 20 \times n)$ нФ $\pm (1,5\% \times C_x + 20 \times n)$ мкФ $\pm (1,5\% \times C_x + 20 \times n)$ мкФ $\pm (2,0\% \times C_x + 20 \times n)$ мкФ $\pm (2,0\% \times C_x + 20 \times n)$ мкФ
VA-MM15	50 нФ 500 нФ 5 мкФ 50 мкФ 100 мкФ	0,01 нФ 0,1 нФ 0,001 мкФ 0,01 мкФ 0,1 мкФ	$\pm (3,0\% \times C_x + 10 \times n)$ нФ $\pm (3,0\% \times C_x + 5 \times n)$ нФ $\pm (3,0\% \times C_x + 5 \times n)$ мкФ $\pm (3,0\% \times C_x + 5 \times n)$ мкФ $\pm (3,0\% \times C_x + 5 \times n)$ мкФ
VA-MM17	50 нФ 500 нФ 5 мкФ 50 мкФ 100 мкФ	0,01 нФ 0,1 нФ 0,001 мкФ 0,01 мкФ 0,1 мкФ	$\pm (3,0\% \times C_x + 10 \times n)$ нФ $\pm (3,0\% \times C_x + 5 \times n)$ нФ $\pm (3,0\% \times C_x + 5 \times n)$ мкФ $\pm (3,0\% \times C_x + 5 \times n)$ мкФ $\pm (3,0\% \times C_x + 5 \times n)$ мкФ

Где C_{x} – измеренное значение, n – разрешение.

Таблица 8 - Режим измерения частоты

Таолица в - Гежим изм			Пределы допускаемой
Модификация	Диапазон	Разрешение (n)	основной абсолютной
Модификация	измерений	1 aspemeniae (ii)	погрешности
	5 Гц	0,001 Гц	
VA-MM38			$\pm (0.006\% \times F_x + 4 \times n) \Gamma \mu$
	1 МГц	0,001 МГц	\pm (0,006%× F_x +4×n) ΜΓμ
	66 Гц	0,001 Гц	$\pm (0,1\% \times F_x + 3 \times n) \Gamma \mu$
	660 Гц	0,01 Гц	\pm (0,1%× F_x +3×n) Γμ
	6,6 кГц	0,001 кГц	$\pm (0,1\% \times F_x + 3 \times n)$ к Γ ц
VA-MM42	66 кГц	0,01 кГц	$\pm (0,1\% \times F_x + 3 \times n)$ к Γ ц
	660 кГц	0,1 кГц	$\pm (0,1\% \times F_x + 3 \times n)$ к Γ ц
	6,6 МГц	0,001 МГц	$\pm (0,1\% \times F_x + 3 \times n) M \Gamma_H$
	66 МГц	0,01 МГц	$\pm (0,1\% \times F_x + 3 \times n)$ МГц
		66 Гц	\pm (0,1%× F_X +3×n) Γιι
		660 Гц	$\pm (0,1\% \times F_x + 3 \times n) \Gamma \mu$
		6,6 кГц	$\pm (0,1\% \times F_x + 3 \times n)$ κ Γ ц
VA-MM42R	VA-MM42	66 кГц	\pm (0,1%× F_x +3×n) κ Γ μ
		660 кГц	$\pm (0,1\% \times F_x + 3 \times n)$ κ Γ ц
		6,6 МГц	\pm (0,1%×F _x +3×n) ΜΓ _Ц
		66 МГц	\pm (0,1%×F _x +3×n) ΜΓμ
		66 Гц	\pm (0,1%× F_x +3×n) Γμ
		660 Гц	$\pm (0,1\% \times F_x + 3 \times n) \Gamma \mu$
		6,6 кГц	$\pm (0,1\% \times F_x + 3 \times n) \ \kappa \Gamma$ ц
VA-MM42RP	VA-MM42	66 кГц	$\pm (0,1\% \times F_x + 3 \times n) \ \kappa \Gamma$ ц
		660 кГц	\pm (0,1%× F_x +3×n) κ Γ μ
		6,6 МГц	$\pm (0,1\% \times F_x + 3 \times n) M \Gamma \mu$
		66 МГц	\pm (0,1%×F _x +3×n) ΜΓμ
	99,999 Гц	0,001 Гц	$\pm (0.05\% \times F_x + 10 \times n)$ Гц
	999,99 Гц	0,01 Гц	\pm (0,05%×F _x +10×n) Γ _Ц
****	9,9999 кГц	0,0001 кГц	$\pm (0.05\% \times F_x + 10 \times n)$ кГц
VA-MM55	99,999 кГц	0,001 кГц	$\pm (0.05\% \times F_x + 10 \times n)$ кГц
	999,99 кГц	0,01 кГц	±(0,05%×F _x +10×n) МГц
	2 МГц	0,0001 МГц	
	·	, i	$\pm (0.05\% \times F_x + 10 \times n) M \Gamma \mu$
	50 Гц	0,01 Гц	$(0,1\% \times F_x + 3 \times n) \Gamma \mu$
X/A N 61/7	500 Гц	0,1 Гц	$\pm (0,1\% \times F_x + 3 \times n) \Gamma_H$
VA-MM17	5 кГц	0,001 кГц	$\pm (0,1\% \times F_x + 3 \times n)$ кГц
	50 кГц	0,01 кГц	\pm (0,1%×F _x +3×n) κΓμ
	100 кГц	0,1 кГц	\pm (0,1%× F_X +3×n) κΓц

Где F_x – измеренное значение, n – разрешение.

Таблица 9 – Технические характеристики

Модель муль- тиметра	Вес без упаковки / Вес в упаковке, кг (включая батареи)	Габаритные размеры без упаковки / Габаритные размеры в упаковке, мм
VA-MM38	0,52 / 0,92	205*95*50 / 250*180*80
VA-MM16	0,3 / 0,6	180*85*40 / 235*165*65
VA-MM55	0,45 / 0,81	190*90*35 / 235*160*65
VA-MM15	0, 3 / 0,56	180*85*45 / 235*165*65
VA-MM17	0,3 / 0,57	180*85*45 / 235*165*65
VA-MM42	0,44 / 0,82	185*90*47 / 235*160*65
VA-MM42R	0,44 / 0,82	185*90*47 / 235*160*65
VA-MM42RP	0,44 / 0,82	185*90*47 / 235*160*65

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации мультиметров цифровых серии VA1 модификаций VA-MM38, VA-MM42, VA-MM42R, VA-MM42RP, VA-MM55, VA-MM15, VA-MM16, VA-MM17 типографским способом.

Комплектность средства измерений

Комплектность мультиметров цифровых серии VA1

1. Мультиметр	ШТ.
2. Измерительные щупы	I пара
3. Измерительные провода	2 шт.
4. Батарея	компл.
5. Паспорт	ЭК3.
6. Методика поверки	1 экз.
7. Кейс для переноски	1 шт.
8. Упаковочная тара	

Поверка

осуществляется по документу ПМ 4431.021.02567136-2014 «Мультиметры цифровые серии VA1 модификаций VA-MM38, VA-MM42, VA-MM42R, VA-MM42RP, VA-MM55, VA-MM15, VA-MM16, VA-MM17». Методика поверки», утвержденному Φ ГУП «ВНИИМС» в декабре 2014 г.

Таблица 10 - Основные средства поверки

Наименование средства поверки	Основные технические характеристики	№ в Госреестре
- воспроизведение постоянного напряжения диапазон 1 нВ1000 В; - с точностью до 0,00015 % - воспроизведение переменного напряжения диапазон 1 мкВ1000 В (0,1 Гц1000 кГц); - с точностью до 0,002 %; - воспроизведение силы постоянного тока диапазон 0,1 нА30 (50) А; - с точностью до 0,002 %; - воспроизведение силы переменного тока диапазон 1 нА30 (50) А (0,1 Гц10 кГц) с точностью до 0,015 %.		37463-08
Мера многозначная электрического сопротивления P3026/1	Лера многозначная - диапазон показаний 0,1 - 10 ⁵ Ом; пектрического со- - класс точности 0,002/1,5 · 10 ⁻⁶ .	
Мера многозначная электрического со-противления P4002 - номинальное сопротивление 10 ⁷ Ом, 10 ⁶ Ом, 10 ⁵ Ом, 10 ⁴ Ом; - класс точности: 0,05.		2224-66
Измерение температуры с помощью термо- сопротивления: Калибратор АКИП - предел РТ100; - (-200,0850,0 С ⁰); - разрешение 0,1%; - погрешность 0,8 С ⁰ .		36814-08

Магазин емкостей	 диапазон измерений: 0,0001 – 100 мкФ; 	5395-76
P5025	- класс точности: 0,1 и 0,5.	3393-70
Генератор НЧ Г3 - 110	- диапазон частот 0,01 Гц-2 МГц (дискретно	

Сведения о методиках (методах) измерений

Методики (методы) измерений приведены в паспорте.

Нормативные и технические документы, устанавливающие требования к мультиметрам серии VA1

- 1 ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».
- 2 ГОСТ 14014-91 «Приборы и преобразователи измерительные цифровые напряжения, тока, сопротивления. Общие технические требования и методы испытаний».
- 3 Техническая документация фирмы-изготовителя.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при выполнении работ по оценке соответствия продукции и иных объектов обязательным требованиям в соответствии с законодательством Российской Федерации о техническом регулировании.

Изготовитель

SHANGHAI YIHUA V&A INSTRUMENT CO.,LTD, KHP

881 Ye Cheng Road Jia Ding District, Shanghai 201821, China, Тел.: +86 21 69523164,+86 21 69523225, Fax: +86 21 69523221,

e-mail: mastech@vip.sina.com.

Заявитель

OOO «Ви энд Эй Инструмент Рус», 660025 г. Красноярск пр. Красноярский рабочий, д. 97, оф. 323/4, т/ф (391) 215-56-53,

e-mail: klv@va-rus.ru

Испытательный центр

ГЦИ СИ ФБУ «Красноярский ЦСМ» 660093, г. Красноярск, ул. Вавилова, 1 «а», Тел.:236-30-80 (многоканальный), факс: 236-12-94, e-mail: krascsm@krascsm.ru, http: //www.krascsm.ru. Аттестат аккредитации ГЦИ СИ ФБУ «Красноярский ЦСМ» по проведению испытаний средств измерений в целях утверждения типа № 30073-10 от 20.12.2010 г.

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46

Тел./факс: (495)437-55-77 / 437-56-66; E-mail: <u>office@vniims.ru</u>, <u>www.vniims.ru</u>

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

		С.С. Голубев
<u> </u>	»	2015 г.

М.п.